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ABSTRACT

This paper is concerned with a combination of experimental and analytical investigation
aimed at identifying modeling errors, accounted for the lack of correlation between
experimental measurements and analytical predictions of the modal parameters for lap
joint panels. A nonlinearity vibration test methodology. initiated from the theoretical
analysis, is suggested for measurements of dynamic stiffnesses in a lap joint using the
rivet fastener. Based on the experimental evidence on discrepancies between measured
and predicted frequencies, improved finite element models of the joint are developed
using PATRAN and ABAQUS, in which the beam element size is evaluated from the
joint stiffnesses readily determined in the test. The beam element diameter as a
principal design parameter is tuned to match experimental results within the
evaluated bound value. Frequencies predicted by the proposed numerical model are
compared with frequencies measured by the test. Improved predictions based on this
new model are observed when compared with those based on conventional modeling
practices.
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Most actual mechanical structures are
1. Introduction composed of many parts connected to one
another by various type of joints. The study
on these connected structures dynamically
* Member, Korea Railroad Research Institute subjected to various forces is an important
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remaining challenge in identification of
joints and development of their structural
dynamic models. Some analytical works
have been performed on idealization of the
joint“'m. In an attempt to establish the numerical
model, many researchers have been designing
tools for linking finite element analysis
results with experimental results. These
studies have in general focused on either
experimental or analytical method but rarely
both. It is usually recognized that each
analysis method has its own inherent
inaccuracies or drawbacks”®. Thus, it
often can create arguments as to which set
of results is more reasonable.

Some approaches®® have been limited to
the deformation analysis for the connected
structures under a static tensile loading.
In an operational loading state, however,
modeling of jointed regions is a difficult
task when the fastener is rocked and tilted
due to nonsymmetry and hole crushing of
the joint. Correspondingly, the vibration
cycle exciting the jointed structure causes
the flexible fastening situation, and thereby
stiffness loss or
damping increase in the joint. Until recently,
the numerical idealization of the joint has

physically results in

been executed in such an empirical manner
that the fastener flexibility is determined
by the margin of safety using engineering
handbooks.

A clear evidence of incorrect predictions
for the stiffness and the damping magnitude
in the joint was reported in the design of
semi-monocoque vehicle structures®”. By
reusing much of the statics analysis model
for the dynamics analysis. secondary and
nonstructural items attached to the skin or
deck have been conservatively modeled as
rigid. Connection flexibility between members
has been ignored for the dynamic analysis.
There has been no complete rationale on
which experimental extractions of dynamic
characteristics in flexible joints are based.
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Verification of finite element models using
experimental data is a common practice in
many engineering applications. Thus, this
verification process is centered on vibration
test results, requiring the model to produce
reliable predictions with confidence. Correlation
of analytical predictions to experimental
measurements is usually demonstrated on
comparison of modal parameters, primarily
natural frequency and mode shape, rather
than comparison of mass and stiffness matrices.
In a large scale structure, these matrices in
the finite element model contain a larger
number of DOF than the responses measured
by the test program. Moreover, matrix
elements can not be explicitly extracted on
the basis of vibration tests. A test/analysis
model should be one reduced to the same
DOF as instrumented in the correlation
analysis. This experimental model is used
as a benchmark test to provide a direct
link for correlations between the analytically
predicted and experimentally measured modal
pararneters(s).

As an example of both experimental and
numerical illustrations, the single lap joint
using the rivet will be demonstrated on an
assessment of applicability to the standard
test method. Prior to building test samples,
this model should represent a typical lap
joint as an integral part of the entire
structure. An important step to the
improved modeling process is to identify major
contributors to the lack of experimental/
analytical correlations. Subsequently, the
idealized model of the jointed area needs
adjustment to the conservative modeling
assumptions. More realistic modeling of the
joint damping is also responsible for the
joint flexible capability. Hence damping
effects in joints are required to observe
experimentally. This paper will focus on
prediction capabilities of modal parameters
in such a combined experimental and numerical
errors can be

manner that modeling
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identified for the design process improvement.
First, an analytical model of the beam with
a midspan joint will be studied to examine
the effects of translational and torsional
stiffnesses using spring constants. Second,
a vibration test procedure will be proposed
to measure stiffnesses, so that these values
can subsequently be implemented in the
finite element model of the corresponding joint.
Third, a more realistic idealization methodology
will be illustrated for the model of the
joint, based on experimentally determined
joint stiffness. The rivet as a fastener is
used in this study.

2. Theoretical Approach

The conceptual basis on the forthcoming
approach for the prediction of the stiffness
in a joint is to insert a fastener at tips of
two cantilever beams and then to vary the
magnitude of the stiffness to represent the
joint property. Modal properties of the
clamped-clamped beam with a midspan
joint are apparently different from those
obtained from the corresponding beam with
no joint. On the basis of reference modal
parameters, sensitivities to modal parameters
of the jointed beam can be investigated by
changes in stiffness.

2.1 Elastic Constraints

For odd-numbered (or symmetric) modes
of the clamped-clamped reference beam
with no joint, maximum moments are
dominated with no shear force at the midspan;
on the contrary, for even-numbered (or
anti-symmetric) modes, maximum shear
forces exist with no moments at the midspan.
Accordingly. slopes for symmetric modes
and deflections for anti-symmetric modes
vanish at the midspan, respectively.

These two groups of dynamic phenomena
can be described by imposing elastic
constraints at tips of two cantilever beams
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Fig. 1 Two groups of the dynamic characteristic
for a single lap joint.

of length ¢

clamped-clamped beam of length 24, as

obtained by cutting the

shown in Fig. 1 Symmetric modes of this
reference beam can be obtained by an
introduction of infinite restraint to the tip
of the cantilever beam using a torsional
spring 4, whereas anti-symmetric modes of

the corresponding reference beam can be
obtained by imposing infinite support on
the tip of the cantilever beam using a
translational spring k,.

2.2 Eigen Analysis

The dynamic behavior of each beam is
assumed as the small transverse vibration
of the cantilever beam. Referring to Fig. 1,
their associated boundary conditions are as
follows:
for the tip torsional restraint:

@x=0: ¢(0)=0, (D'/(e()):O.
— . ot ¢t ’ _ yre _
@x= 1: 0" () + L 0(£)=0, 0" (1)=0
(1-a,b)

for the tip translational support:
@x=0: ®0)=0, (1)'(2):0,
@x=£: 0"(4)— BT P(2)=0, O’ (£)=0
(2-a.b)

where EI is the bending stiffness of the
beam. The notation (.)° denotes a derivative
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with respect to x and @(x) the transverse
vibration amplitude.

Next step is to solve these two sets of
eigen problems under assumptions made on
the Euler- Bernoulli beam. Small vibration
deflections are expressed as the following
general equation:

O,;(x) =asinfBx+ a,cosfBx (3)
+ aysinhfx+ a,coshfx

where values of B, and three of the four
constants of a@,. a3, a; and @4 are determined
from the above four boundary conditions.
For a given m, mass per unit length of the
beam, £, is defined as
2
= T (4)

where w, is the angular frequency for the

th
1" mode.

Setting the determinant equal to zero
with respect to the above four constants
yields the following natural frequency
equations:
for the tip torsional constraint:

G, . .
oy (sin7;coshr;+ cos 7;sinh 7;) (5)

H

+1+ cosr;coshr;=0,

for the tip translational constraint:

%( sin 7; cosh »;— cos #;sinh 7;) (6)

+1+ cosr;coshr;=0,

where #,(=8;¢) is an infinite number of
eigen values, G is the nondimensional
torsional stiffness and K is the nondimen-
sional translational stiffness, defined as

k.t

G= &7 (7
and
ko3
K= BT (8)

If the beam is free at the tip. which is
identical to the case of the cantilever beam,
only the last two terms remain in the natural
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frequency equations (5) and (6).
With only stiffness K
increased to infinity at the tip of the

translational

cantilever beam of length ¢, their vibration
modes approach the anti-symmetric modes
of the clamped-clamped beam of length
2¢, whereas symmetric modes of the
clamped-clamped beam of length 2¢ can
be obtained with only torsional stiffness G
increased to infinity at the tip of the

cantilever beam of length 2.
3. Modal Parameter Sensitivities

Equations (5) and (6) provide a spectrum
of natural frequencies by varying the value
of stiffness K and (G, respectively.

Furthermore, it 1is possible to acquire
modal parameter sensitivities in terms of
natural frequency and mode shape based
on those of the reference beam. At first
natural frequency sensitivities will be
computed and then mode shape sensitivities

will be investigated in terms of tip deflection.

3.1 Natural Frequency Sensitivity

In both cases of tip torsional restraint
and tip translational support. natural frequency
sensitivities were investigated by increasing
one order of magnitude in a range of stiffness

G and K from 1079 to 10 as shown in
Figs. 2 and 3., respectively. The three
lowest natural frequencies were obtained as
a function of nondimensional spring constant.
In both plots, natural frequency bases were
obtained by imposing infinite spring stiffness
at tips of the double cantilever beam.

In the sensitivity computation, the sensitivity
is set to 0 % when the measured parameter
is equal to the base value. Natural frequencies
are very sensitive to the nondimensional

stiffnesses, G and K, between 10! and 10*

For flexibilities below 10~ ! in nondimensional
stiffness, sensitivities become saturated close
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to the case of the cantilever beam. Also,
for too rigid joint with flexibilities above
10*, variations of natural frequencies are
almost close to the case of the clamped-
clamped beam with no joint. As a result,
dynamic responses caused by the
flexibility under operational

joint
loadings is
expected to be produced between 107! and

10* in nondimensional stiffness.

3.2 Mode Shape Sensitivity
Following eigen functions associated with
their tip constraints are produced by eigen

T
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Fig. 2 Natural frequency sensitivities due
to the tip torsional stiffness.
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Fig. 3 Natural frequency sensitivities due
to the tip translational stiffness.

solutions as mentioned in the previous
section:
for the tip torsional constraint:

D;(x)= ayl coshB;x— cosS;x (9)

sinh7;— sin7;

" cosh7, T cosr; (SinnAix = sinfi0)],

for the tip translational constraint:
@ (x)= ayl coshB;x— cosB;x

cosh7;+ cosr; , . )
~ “sinhr,;+ sin 7, (sinh 8;x — sin 8;x)],

(10)

where @, is the undetermined coefficient of

the mode shape. For both elastic constraints,
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Fig. 4 Tip deflection sensitivities due to the tip
torsional stiffness.
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the mode shape equation is of the same
form as that of cantilever beam which in
fact has free elastic constraints. However,
the eigen value 7, is governed by the

nondimensional spring stiffness G or K
defined in equations (7) and (8).
Sensitivities to mode shapes can be also
observed as a function of stiffness K and
(. respectively. In comparing mode shapes
given in equations (9) and (10) with the
coefficient a4 set to a constant, the reference

amplitude due to torsional constraint was
set as the tip amplitude for an infinite
torsional spring stiffness. Similarly, the
reference amplitude due to translational
constraint was chosen as the tip amplitude
for a zero translational spring stiffness.
One convenient way of comparing each
mode with the reference mode 1is to
investigate its sensitivity at the tip, where
deflections for each mode with infinite
torsional and translational stiffness becomes
maximum and zero, respectively.

Accordingly, tip deflections due to torsional
restraint in Fig. 4 are normalized by midspan
deflections of the clamped-clamped reference
beam, and tip deflections due to
translational support in Fig. 5 are scaled
on the basis of those of a cantilever beam.
In both cases, very sharp changes in tip
deflection sensitivity occur approximately

between 107! and 10* in stiffness, G and K,
respectively. In particular, there exist peak
values of sensitivities for anti-symmetric
modes around 10' to 10°® in stiffness K. Tip
deflections above 10* in stiffness G are
deflections of the
clamped-clamped reference beam. However,

close to maximum
tip deflections below 107! in stiffness K
and G converge to those of the cantilever
beam. Tip deflections become zero for very
rigid joints above 10* in stiffness K. These
physical phenomena are readily observed
for the investigation of natural frequency
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sensitivities in extreme cases of stiffnesses.
4. Proposed Test Program

The experiment involves reference tests
for sensitivity observations of modal
parameters as well as calibrations of
excitation force levels for a consistent test
environment. In particular, the reference
test is used to generate base values for the
tip  deflection
vibration amplitude magnitude depends on
the excitation force level. Figure 6 shows
the shaker test setup to control excitation

sensitivity because the

forces, as well as the impact hammer test
setup.
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(PCB 336C34)

IMPACT HAMMER

(PCB 23] IMPEDENCE HEAD

SHAKER(WR F4 Z-820W)

Fig. 6 The schematic diagram of a combi-
nation of impact hammer and shaker
test setups.

)

1. Solid steel bar : 50.8 mm x 101.6 mm x 381.0 mm,
15.42 kg/each

2. Base steel bar : 381.0 mm x 1016.0 mm x 25.4 mm,
77.56kg

3. Bolt diameter :15.88 mm

4. Rivet diameter : 6.35 mm

Fig. 7 The experimental fixture for the
clamped-clamped boundary condition.
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4.1 Test Fixture

The supporting fixture in Fig. 7 was
built massive enough to extract information
regarding the structure of interest, not the
supporting structure. The first few modes
for jointed panels were isolated far from
the fundamental mode for this fixture with
a Clamped-Free-Clamped-Free (CFCF) boundary
condition. The actual sample weighs 0.635
kg, as compared with the whole fixture
weight over 135 kg. Four steel bars are
used to clamp test samples by means of six
15.88 mm bolts. A base steel plate supports
the entire assembly. For both linear and
nonlinear vibration tests, the test setups
were built as a combination of the impact
hammer and shaker tests, depicted in
Fig. 6.

4.2 Test Sample

The reference test for the extraction of
joint properties needs two simple beams.
The first sample is the beam of length 2¢
= 406.40 mm clamped along both sides,
denoted CC for a later reference. The
second is the beam of length ¢ = 203.20
mm clamped along one side and free along
the other, denoted CF. The single lap joint
beam was made using a rivet fastener of
diameter D = 6.35 mm located at midspan
of double CF with length ¢ = 219.50

400

# [ ] : I ¥
2.29mm I‘“ 1.5D
e &0 o
I il

Fig. 8 The test sample for typical lap joint
panels.

mm, and denoted LRV. All samples have
the same width w = 22.86 mm and
thickness ¢t = 2.29 mm. The rivet’s head
is tapered and countersunk for a flush
installation. Aluminum (Al 5052) used as
test specimen material has the following
nominal properties: Young's modulus E
=7.136x10° kg/m? Poisson’s ratio » =
0.33 and density o = 2.685x10° kg/m®.
In a purpose of application to lap joint
panels, one sample without joints was
made the rectangular plate with 406.40
mm long along the two free edges and
254.00 mm wide along the two other
clamped edges, and denoted CFCF for later
reference. Typical lap joint panels were
constructed using rivet fasteners as shown
in Fig. 8. Width of disjointed main panels
is 254.00 mm along two clamped edges in
the CFCF boundary fixture and length is
203.20 mm along two other free edges.
Two kinds of sample were tested according
to the number of rivets with the same lap
splice width 6D: 4 rivets marked as "=  in
Fig. 8 were employed and then 6 rivets
marked as '(O° were added to employ 10
rivets. Each corresponding sample will be
denoted using the notation, L#, where L
stands for Lap joints and # the number of

|
REGION | REGION Il REGION It ‘
i
10+ 1
e R M e X % X
*"(Jx* o-% 0-8-0©
i
8

! -x- : REFERENCE BEAM (CC)

-] -0~ LAP JOINT BEAM (LRV)

ACCELERANCE (g/Xgf)
@

o

5 8 7 8 510 W
EXCITATION FORCE (Kgf) x 10

Fig. 9 The choice of excitation force levels
in the first mode for consistency to
tests of the jointed beam.
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rivet to be fastened. For example, L10
indicates a lap joint with a 6D lap width
fastened 10 rivets.

4.3 Excitation Force Calibration

Excitation force levels must be chosen
assure that the connected
structure is actually excited in its true

properly to

linear range. The choice of the excitation
force level is needed for consistency of
vibration tests for reference beams and the
jointed beam. The force level is increased
until there is no change in the transfer
function for different force levels.

Figure 9 presents accelerances in g/kgf
versus force level in kgf for the transfer
accelerance measured from
using the shaker at
location 19.05 mm off the clamped support
and the acceleration g at the midspan
location. This plot shows that excitation
forces for the first mode of the LRV beam

actually consist of three main regions, but

which was

excitation forces

the reference CC beam maintains a

constant accelerance over the given
In the first force level
area (Region I), the force level is so low
that the

significant. As the force level is increased

excitation level.

friction force in the joint is
(Region 1I), the friction force in the joint
continues to reduce in magnitude causing a
nonlinear relationship of accelerance versus
force level. The third one (Region III) is
the true linear region consisting of
constant values of accelerance for changing
levels. This

phenomenon, termed as

values of force physical
ankylosis(g),occurs
where the friction force in the joint has
been reduced to a constant value. In other
words, the friction force in the joint in the
first two large to be

overcome by the excitation force and tests

regions 1is too

In all tests
excitation forces were selected at about 6.8
Xx10™ kef.

yield variable accelerances.
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5. Preliminary Test Result

Two criteria will be used to evaluate
correlations of the experimental/analytical
results in the present work: natural
frequency discrepancy and Modal Assurance
Criterion (MAC). The first criterion is used
to detect frequency errors produced by the
finite element model. The second indicates
the accuracy of mode shapes predicted by
the corresponding model. In addition, the
role of measured damping levels will be

discussed.

5.1 Linearity Test

The first step is to verify test repeatability
reciprocity or linearity
using the CFCF panel. It is because a

standard boundary condition should be the

associated with

300
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Fig. 10 Correlation between measured and
predicted frequencies for the CFCF
panel.

Table 1 The MAC matrix for the CFCF panel.

Mode 1 2 3 4 5
1 0.92 | 0.02 | 0.00 | 0.00 | 0.26
2 0.00 [ 0.98 | 0.00 | 0.00 ! 0.00
3 0.00 | 0.00 | 0.98 | 0.00 | 0.00
4 0.00 | 0.00 | 0.00 | 0.98 | 0.00
5 0.11 | 0.00 | 0.00 | 0.00 | 0.99
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consistent test environment for the lap
joint panels under test. Test results of the
first five natural frequencies for the CFCF
panel using the hammer test were compared
with analytical results using the commercial
FEM package. PATRAN and ABAQUS "'

Figures 10 shows an excellent correlation
between experimental measurements and
analytical predictions. Errors are in a
range of less than 2 %. Measured
deflections for the corresponding five modes
were compared with predicted deflections.
MAC values were computed into the (5 X 5)
matrix in Table 1 where the row modes
are extracted from analytical results and
the column modes from the modal testing
data. The values on the diagonal in the
MAC matrices are close to unity. This
implies that the measured residue vectors
are consistent with their computed mode
shapes. Measured damping levels for the
CFCF panel remained below 1 % critical,
as compared with 0 % damping assumed in
the analytical approach. Thus, the damping
level has a little effect on natural
frequencies. Three modal parameters show
an excellent correlation and the CFCF
boundary condition assures a consistent
test environment for test articles using the
shaker test.

5.2 Nonlinearity Test
The dynamic response of fastened
structures is influenced by the nonlinear
behavior which may be generated by the
hole clearance and relative displacements
between structural members. In the impact
hammer test, infinitesimal amplitudes are
measured by a very low level of excitation
force. However, if a larger excitation force
is applied to the jointed structure, the
frequency function will be

completely different“z). By concentrating

response

the entire force spectrum at a single

frequency, sinusoidal excitations can

produce the highest possible response
levels for a given force rating of the exciter
13" " As a result, individual modes can be
tuned and studied at controlled amplitude
levels. This testing method 1is highly
desirable in the nonlinear situations due to
slippage or friction.
components -
Figures 11 and 12 show the lowest two
modes for the L4 and L 10 panels as a
function of the vibration amplitude,
respectively. In the abscissa the measured
vibration amplitude is normalized by the
panel thickness. whereas in the ordinate

rattling or loose
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Fig. 11 Normalized first and second natural
frequencies of the L4 panel versus
normalized vibration amplitude.
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Fig. 12 Normalized first and second natural
frequencies of the L 10 panel versus
normalized vibration amplitude.

ZLASTESIEEX/A 8 B Al 1 &, 19989/ 65



Seong-Ho Yun

the measured natural frequency is
normalized by those obtained with the
hammer test. At first a moderate drop in
frequency is observed by maximum 3 % for
the first mode and 2 % for the second
mode. The

considered as a softening effect: i.e.,

decrease in frequency is
relative motion between parts of the joint
starts due to the looseness with the
increasing amplitude. This fact makes
frequencies lower. Frequencies then start
to rise at a certain amplitude. The increase
in frequency is considered as a stiffening
effect: i.e., as the relative motion reaches
maximum allowed by the hole clearance,
increased
amplitude results in rising effective panel
stiffness due to

membrane stresses of the

clamped boundary
conditions. Minimum frequency obtained by
the shaker test should be a reliable design
parameter to be compared with numerical
predictions.

6 . Measurement of Modal Parameter
Sensitivity

Modal properties for the double CC
beam were theoretically observed to be
very sensitive to the stiffnesses of midspan
torsional and translational springs. This
analytical approach provides a means of
experimental measurements for these
stiffnesses. Modal parameter sensitivities are
first measured experimentally, and then
the corresponding stiffnesses are estimated

using computational tools.

6.1 Natural Frequency

Natural frequencies analytically measured
by an introduction of infinite stiffness can
be used as bases for experimental natural
frequencies of the LRV beam. Since the lap
joint beam actually has an overlapping
material mass at midspan, natural frequency
bases for the LRV beam are completely
different from those of the simple CC beam.
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Table 2 Bases for natural frequencies for
simple and jointed beams [(Hz].

1 2 3 4 5 6
Samp

CF | 45.51 [285.26|799.15
CC |72.41]199.60|391.33|647.09|967.09| 1351.90

LRV | 69.07|1199.53|378.05{646.41]|935.54| 1349.00

ode

Table 3 Natural frequency sensitivities for
the lap joint beam due to the tor-
sional and the translational stiffness.

Mode | Elastic restrantin Elastic support
(Hz} (Hz)
Test 1] 35 [ 271416

Test I [67.21(357.40(847.70{199.80{632.80|1218.70

Test II |68.00(361.30{849.20{199.00/624.60]1220.40
Test III |69.39(363.40(860.30{198.70{633.50|1244.00
Average [68.20(360.70|852.401199.20(630.30{1227.70

Base [69.07|378.05|935.54|199.53|646.41{1349.00

Sensitivity |-1.26%(-4.59% | -8.89% [ -0.17% | -2.49% | -9.00%

Stiffness G = 13.37 K = 1066.41
1G = 0.730 kgf/m, 1K = 19.358 kgf/m

This structural difference resulted in numerical
extractions of natural frequency bases for
the lap joint beam.

The values listed in Table 2 were calculated
using finite element analysis tools, PATRAN
and ABAQUS. Beam elements with a cubic
interpolation were used in modeling of the
LRV beam. The beam element has no
shearing effect based on classical Euler-
Bernoulli assumptions. Midspan stiffnesses
were controlled by spring elements which
are simple linear springs acting between
two nodes in a fixed direction or rotation.

As previously presumed for an added
mass effects, values of natural frequencies
for symmetric modes were found lower than
those of the CC beam because of mass
participations in the vibration cycle. On
the other hand, no significant difference
for anti-symmetric modes is observed
because the joint mass only contributes
rotary inertia. Table 3 lists the averaged

frequencies and the corresponding sensitivities
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based on reference frequencies presented in
table 2. Figures 13 and 14 show predictions
of stiffness values by locating experimentally
measured frequency sensitivities on the
sensitivity curve and then reading those
corresponding nondimensional stiffnesses, G
= 13.77 and K = 1066.41, respectively. Finally,
using equations (7) and (8), nondimensional
stiffnesses were converted to obtain actual

torsional stiffness %4, = 10.68 kgf/m and
translational stiffness 4, 20644 kgf/m,

respectively.

6.2 Tip Deflection
The consistent mode shape amplitude for
the reference, CC or CF, and the LRV

10
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Fig. 13 The natural frequency sensitivity in lap
joint for the prediction of torsional

stiffness.
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Fig. 14 The natural frequency sensitivity in lap
joint for the prediction of transla-
tional stiffness.

beams should be obtained by force levels
applied in the linear range of ‘ankylosis as
stated earlier. Deflections were measured at
the midspan location where those for
symmetric modes are maxima. Note that
deflections of the LRV beam at the
midspan for anti-symmetric modes are not
zero due to the joint flexibility. Therefore,
midspan  deflections for anti-symmetric
modes has real sensitivities to those of the
reference CF beam. Bases for experimentally
measured deflections and averaged deflections
are given by Table 4. Values of the
torsional and the translational stiffness for
the LRV beam can be estimated from Figs.

)
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Fig. 15 The tip deflection sensitivity in lap
joint for the prediction of torsional

stiffness.
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Fig. 16 The tip deflection sensitivity in lap
joint for the prediction of transla-
tional stiffness.
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Table 4 Experimentally measured tip deflections
and bases for the lap joint beam
(10 mm).

Mode)

1 213 4 5 6 K| G
Test

LRV (25.832)0.584 [28.702} 2.286 | 60.960{ 1.016 [1012.30( 12.82
BASE |26.238(30.734/32.944| 62.408 { 53.873}253.721| 0 o
16 = 0.730 kgf/m, 1K = 19.358 kef/m

Table 5 Summary of joint stiffness estimates
based on sensitivity measurements
for frequencies and tip deflections.

Stiffness Translational Torsional
Sensitivity (K) (&)
Frequency 1066.41 13.37
Tip deflection 1012.30 12.82
Average 1039.36 13.10

1G = 0.730 kegf/m, 1K = 19.358 kgf/m

Table 6 The MAC matrix for the L4 panel
modeled using the BM-RF method.

Mode 1 2 3 4 5

1 0.99 | 0.00 | 0.00 | 0.00 | 0.05
0.00 | 0.99 | 0.00| 0.00 | 0.00
0.00 | 0.00| 0.91] 0.03 | 0.00
0.00 | 0.00 | 0.03 | 0.92 ] 0.00
0.06 | 0.05 | 0.00| 0.01 | 0.80

o jw|o

Table 7 The MAC matrix for the L10 panel
modeled using the BM-RF method.

Mode 1 2 3 4 5

1 0.99 | 0.00 | 0.04 | 0.00 | 0.04
0.02 [ 0.97 | 0.00 | 0.00 | 0.01
0.00 | 0.00 { 0.98 | 0.01 ; 0.00
0.00 { 0.00 | 0.01 | 0.96 | 0.00
0.15 | 0.00 | 0.00 | 0.00 ; 0.98

DMk Wik

15 and 16, respectively.

Finally, values necessary for the finite
element implementation were predicted by
averaging a collection of stiffnesses from
readings of different modal parameter
sensitivities, as summarized in Table 5.
Damping levels were experimentally observed

68 /I 2SXNSBeEX/A 8 A A 1 F, 19984

below 1 % critical and have a little effect
on natural frequencies. This low damping
level implies that the joint can be modeled
by only spring elements without any
damping element.

7. Modeling Technique

7.1 Conventional Modeling Method

It should be noted that no clear guideline
is available for modeling fastened joints. The
existing method will mimic a rigid modeling
technique wused for modeling connected
regions. Those regions were also dimensionally
simplified to a collection of one or two
configurations Dby
adjoining them rigidly to adjacent skins by
means of shared nodes. Therefore it is

dimensional element

anticipated that this method results in
overestimates of frequencies. For simulating
this modeling approach for lap joint panels,
L4 and L10, the joint was replaced with a
reinforcing beam located at the geometric
centroid of the connected region. A line of
reinforcing beam shared nodes with the
centroid in the finite model. Figure 17
shows this beam reinforcement method
denoted as BM-RF. The sectional area and
inertial property of the beam were adjusted
to represent the transverse stiffening effect
of the splice plate.

Figure 18 shows the correlation between
measured and predicted frequencies. The

Centroid of
Reinforced Area

'."" Joint Spacing
F 80 or 18D

Fig. 17 The beam reinforcement (BM-RF)
element method.

Reinforcing Beam
Element
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BM-RF method systematically overestimates
frequencies by about 20 % which is caused
by the infinite increase in stiffness of the
joint. The MAC matrix for the L4 panel is
listed in Table 6. The diagonal values of
the MAC matrix are above 0.90 except for
the fifth mode with a 20 % error. Table 7
presents the corresponding data for the
L10 panel. The diagonal elements are
above 0.95, thereby indicating an excellent
correlation between measured and predicted
mode shapes. Measured damping ratios
were less than 2 % for test samples.

In summary, the predicted mode shapes
are in general satisfactory, even though
the frequency correlation is rather poor.
Mode shapes do not play a significant role
in detecting modeling errors. Due to very
low damping levels, finite element models
without damping elements can be achieved
for controlling frequencies. As a result,
modeling error sources can be considered
as conservatively rigid connections relevant
unknown type and unknown magnitude of
the joint stiffness.

As shown in Table 5, translational and
torsional stiffness, K and (. were experimentally
measured by modal parameter sensitivities
for a single lap joint beam. However, it
does not indicate that these measured
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Fig. 18 Correlation between measured and
predicted frequencies for L4 and L10
panels using the BM-RF method.

values can be directly applied to muiti-dimensional
structures. primarily because for each mode
of dimensionally complicated structures the
type of force such as translational force,
bending or torsicnal moment acting in the
joint is quite difficult to identify. This
question arises as to how to utilize joint
stiffnesses measured in the one dimensional
structure and implement those values into
finite element models of the joint on the
multi-dimensional structure.

7.2 Test Data Applicability

In general, higher vibration modes are
influenced by a combination of translational
force and bending moment in many unknown
directions. Forces are complicatedly coupled
in higher modes. However, for lower modes
a fewer type of forces tend to be dominant
in one direction. The stiffness values
measured from the lap joint beam can not
provide the capability of its direct implemen-
tation in the finite element model of the
jointed panel, because there still exist
unknown magnitudes of forces acting in
unknown directions. Furthermore, it is very
difficult to predict a unique value of stiffness
in a specified direction, independent of the

. (15.16)
influence on other forces

. An important
implication of the measured joint stiffness
is that the

maximum magnitude in one direction of the

measured value can Dbe

multi-dimensional structure with various
joints.

Implementations of the translational spring
constant £k, and the torsional spring constant

k, in the finite element analysis cause great

difficulties in controlling an independent
stiffness in each direction. In fact, a different
element type is needed as a substitute for
the spring element which has a lack of
dimensional versatility. The beam element
better
advantage of performing characteristics of

with circular cross-section takes

heavily coupled forces. By controlling the

ok
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beam element diameter, d,, rather than

the magnitude of each spring constant in
three independent directions. the number
of design variables to be used in the
numerical model can be reduced to only
one. Furthermore, the circular cross-section
of the beam element provides better capabilities
for translational forces and moments around
the circumference of the joint. The beam
element can be positioned at the joint
location. Hence. a very small length of beam
element is necessary for modeling the joint.
As the beam becomes shorter, the effect of
shear deformation becomes so evident that
the use of the Timoshenko beam element is
desirable in the finite element analysis.
The transverse shear deformation in this
beam element is treated as if the response
were linear elastic, independent of the
axial and bending responses.

7.3 Proposed Finite Element Model

Figure 19 shows the refined model of the
connected region. The fastener is represented
by a perimeter of beam elements around
the fastener hole. Each plate is represented
by its center plane and beam elements are
connected by sharing nodes on two disjointed
plates. To 1investigate effects for the
number of beam elements to be implemented
into joints, n beam elements are used in
the model. In the present work, the simplest

model, n = 1, uses a single beam element

at the center of the joint: the other two

models, n = 4 or n = 8, have four or
Plate Conter Line

/ Fastensr Dia.

Plate Conter Line

Fig. 19 A schematic diagram of the finite
element model in the joint area.
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eight beams equally spaced around the
perimeter of the fastener hole, respectively.
It is very difficult to identify the prying

M As a result, the

action and its value'
position and stiffness magnitude for the
prying contact, independent of the joint
flexibility, are still unknowns. This effect
was incorporated into the stiffness of the
beam element. The mass properties of beam
element were calculated to match the total
fastener mass.

Finite element models were made using
the PATRAN and ABAQUS packages. The
effects of discretization idealization errors
on the model were observed for the simple
plate by increasing the element size
(h-refinement) and also by increasing the

)1 Panels

element order (p-refinement
were modeled with four noded and shear
deformable plate elements meshed by 1.62
cm?®. Discretization errors were less than 1
% for the first five modes. But, the
modeling of fastener regions was produced
by the paver type mesher required more
sufficient discretizations for the bulk of the

plate elements.

7.4 Design Data Implementation

Experimental stiffness values from a
single joint beam were assumed as
maximum values in an unknown direction
in the fastened panel. At first, maximum
beam size should be determined according
to an individual force influence. After the
limited values of the beam diameter are
set up as lower or upper bounds associated
with each force effect, changes in diameter
will be made possible to tune frequencies.
The bound of the beam size will be
calculated by determining the force type
being transferred across the joint.

Lap joints are subjected to a bending
moment M acting in an unknown direction,
a shear force acting in a direction normal
to the plane of the panel, and an axial
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z M

Fig. 20 A schematic diagram of the forces
acting in the lap joint.

force acting in the plane of the panel. In

other words, schematic

referring to a
diagram of Fig. 20, the shear force F, acts
in a direction parallel to the fastener axis,
whereas the axial force F, acts in a
direction transverse to the fastener axis.
First. if an assumption is made that the
structure is under sole bending moments
and n beam elements are equally spaced
around the joint in the fastener’s direction,
the experimentally measured stiffness £k, is
equivalent to the sum of each torsional
stiffness of the beam element used in the
model. Therefore, an equivalent torsional
stiffness of the beam element yields the
following relationship:

n—— =#k, (11)

L=nd /64 is the

moment of the beam’s cross-section, E. is

where second area

Young’'s modulus of the fastener material,
de the beam element diameter and ¢, its

length, 2.29 mm.

Next. a similar reasoning can be applied
to the effect of sole translational forces in
n beam elements followed by an equivalent
translational stiffness

EA,
p—ele

7, =k, (12)

where A,=nd*/4 is the
cross-sectional area. From the equivalent

stiffness relationships, equations (11) and

element

(12), the beam element size in mm can be
calculated as follows:
for the sole bending moment effect A

d,=85.2983 4\/765 (13)

for the sole shearing force effect F;:

_ [_K
d.=8.9510 7E, (14)

where nondimensional torsional stiffness G
and nondimensional translational stiffness
K were defined in equations (7) and (8).
respectively.

The beam diameter d, is proportional to
the stiffness and inversely proportional to
the number of beam elements. The estimated
joint stiffnesses listed in Table 5 are used

Table 8 Beam element diameter d, (10 “mm)

estimated from the measured
joint stiffnesses.

n Based on G Based on K
1 279.4 8.9
4 200.7 4.3
8 170.2 30
108}
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Fig. 21 Normalized frequencies versus d,
for the L4 panel (n = 4).
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to compute beam diameters using equations
(13) and (14). Table 8 lists the results for
different values of n. Young's modulus of
the rivet was 7.312x10° kg/m?.

These values can be fine-tuned based on
the experimentally measured frequencies
using the shaker test. Figure 21 shows the
normalized frequencies for the L4 lap joint
panel as a function of beam diameter, for
n = 4. Frequencies computed by the finite
element model are normalized by experimentally
measured frequencies. Beam diameter variations,
d,, are made from 0.889 to 2.159 mm.

The lower and upper bounds from table 8
are 0.043 and 2.007 mm, respectively.
Predicted frequencies calculated with d,
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above the upper bound are almost

independent of d,. For d. values below
1.270 mm, frequency discrepancies become
significantly large. The best correlation
occurs approximately at the value d.

2.032 mm. Therefore., the beam element
diameters calculated from the measurements
of joint stiffnesses provide likely range
values for tuning frequencies.

Similar behaviors can be observed for
other finite element configurations as
shown 1n Figs. 22, 23 and 24 for the L4
model with n = 8. and the L10 with n =
4 or n = 8, respectively. Table 9 lists the
values of n and d., yielding the best

correlation  with measured
frequencies for those corresponding finite
element models. Within estimated bounds
of beam diameter for all numerical models,
the lowest three predicted frequencies tend

to be in better

experimentally

agreement with the
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Fig. 24 Normalized frequencies versus d,
for the L10 panel (n = 8).

Table 9 Model parameters, n and d. (10mm).
for lap joint panels.

Sample n d,
4 200.7
L4 8 170.2
4 177.8
L10 8 101.6
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measurements and has little effect on beam
diameter. This physical phenomenon would
indicate that the beam diameter predicted
by any joint stiffness measurement yield
good correlations with the lowest measured
frequencies. Fine-tuning only improves the
correlation for the last two modes. It
should be noted that for the lap joints, the
optimal value of d, is <close to that
extracted from the measured joint torsional
stiffness G.
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Fig. 25 Correlation between measured and
predicted frequencies for L4 and
L10 panels using the BM-RF and
proposed finite element models (n= 4)
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Fig. 26 Correlation between measured and
predicted frequencies for L4 and
L10 panels using the BM-RF and
proposed finite element models (n= 8)

7.5 Comparison with Conventional
Approach
The frequencies predicted by the proposed
finite element model will be compared with
the measured frequencies described in the
previous section. Table 9 lists design parameters
of finite element models. Figure 25 shows
that experimentally measured frequencies
are compared with those predicted by the
proposed L4 and L10 models of n =4 and
those estimated by the BM-RF method,
respectively. Errors of up to 20 % are
observed for the BM-REF methods, but are
reduced to 5 % for the proposed model.
Similarly. the results for n = 8 are shown
in Fig. 26. Errors are reduced from 20 %
for the existing method to 5 % for the
proposed model.

8. Conclusion

This paper describes a combination of
experimental and analytical investigation
aimed at identifying modeling errors, accounting
for the lack of correlation between experimental
measurements and analytical predictions of
the modal parameters for lap joint panels.
Large discrepancies were observed between
measured and predicted natural frequencies
that can be almost entirely ascribed to the
conservative modeling method.

Based on this experimental evidence,
improved finite element models of the joint
were developed using a set of concentrated
translational and torsional spring constants
experimentally determined in a single lap
joint. The implementation of these experimen-
tally determined joint stiffnesses is not a
straightforward process because some types
of forces such shear force, axial force and
bending moment are complicatedly coupled
and different from mode to mode. However,
these stiffness values provide a means of
the bounds, within which design parameters
can be fine-tuned to match experimental
results. The spring element has a lack of
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dimensional versatility and is replaced by
the beam element. In the proposed finite
element model, the joint flexibility is
represented by beams with a circular cross-
section which diameter is evaluated from
the measured joint stiffnesses.

The frequencies predicted by this proposed
numerical model were compared with the
measured frequencies using the shaker test.
The predictions based on this new model
are considerably better than those based
on conventional modeling practices: errors
of up to about 20 % obtained with the
BM-RF methods were reduced to about 5
% with the proposed methodology.

Finally, the proposed finite element
model may require expensive computations
for refined representations of the joint
area, but the joint DOF will be greatly
reduced because the joint is expressed as a
lumped parameter. As a result, this design
parameter would be universally used for
the same type of joints.
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