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1. Introduction

Many structures and machines generate dynamic 

displacements using an exciting force; thus, it is 

vital to identify the characteristics of vibrations in 

the initial design. The analysis technique that is 

most frequently used now is finite element analysis; 

however, it is not easy to quantitatively determine 

the design direction for complex or large-scale struct

ures. Therefore, unless a valid design tool is 

established, the design takes long time, or an 
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ABSTRACT

This paper describes the time rate of change of dynamic response of a cantilever beam inserted with a 

damping element, such as bonding, which is excited under a general force at various locations. A sensitivity 

analysis was performed in a finite element model to show that two types of second-order algebraic governing 

equations were used to predict the rate of change of dynamic displacement: one is related to the modal 

coordinate linked to a physical coordinate, and the other to the design parameter of the time rate of change of 

displacement. The sensitivity differential equation formulation includes more complicated terms compared with 

that of the undamped cantilever beam. The sensitivities of the dynamic response were observed by changing the 

location of the excitation force, displacement extraction, and cross-sectional area of the beam. The analytical 

results obtained by this suggested theory showed a relatively good agreement when compared with those 

obtained using the commercial finite element program. The suggested analysis procedure enables the prediction of 

the response sensitivity for any finite element model of the dynamic system.
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excessive analysis cost is incurred owing to the 

errors introduced by the architect or their lack of 

experience.

Dynamic sensitivity analysis is performed to 

identify design factors that sharply change dynamic 

behaviors by determining the variable with a high 

or low contribution to target performance.[1] It is 

necessary to investigate how much the changes in 

mass, stiffness, exciting force, or shape in a 

dynamic system quantitatively contribute to the 

change in the vibration characteristics. A tool is 

needed to quantify how sensitive a change in 

specific design parameters is to dynamic behaviors 

in a dynamic system.[2] Sensitivity analysis in design 

represents the correlations between design parameters 

and responses. Most vibrating structures have a 

damping performance, but recent theoretical approach 

to sensitivity analysis has ignored damping and 

approximated the sensitivity analysis of modal 

variables.[3,4]

This study deals with vibrations to which an 

aperiodic external force is applied based on a modal 

analysis theory that includes general viscous 

damping and performs sensitivity analysis for 

dynamic displacements by applying finite elements 

to Euler-Bernoulli cantilever beams. If a commercial 

finite element program is used, it accompanies a 

somewhat complex process of calculating the 

changes in displacement in the existing and changed 

systems, including calculation of changes in 

members and derivation of the rate of change of 

responses in each step. The proposed analysis 

algorithm can be extended and applied to structures 

of regular shapes to facilitate the implementation of 

finite elements. For example, it can contribute to the 

research on the truss and grid-type structures with 

regularity of shape, foldable solar panels of artificial 

satellites applying them, and mechanical arrangement 

shapes of reinforcements for aircrafts, ships, and 

vehicles.[5] 

  This study sets the magnitude of external force, 

the position of external force, detection position, and 

cross-section shape as design parameters, observes 

the change rate of dynamic responses as design 

parameters, and then observes the rate of change of 

dynamic responses while changing the detection 

positions of dynamic displacements. The rate of 

change of dynamic responses is examined from the 

two equations of motion, that is, the differential 

algebraic equations that are expressed by the 

physical coordinates and coordinates representing the 

the rate of change of displacement by changing the 

design parameters. In other words, we use the 

equations of motion that include damping and 

include the rate of change from modal analysis. The 

responses of complex external force terms in a 

differential equation that represents the sensitivity, 

including the effect of damping, are used in the 

finite element model of cantilever beams. 

Furthermore, the change in cross-sectional shape in 

the forced damped vibration of the cantilever beam 

automatically reflects the change in mass and 

stiffness. Then, a series of analysis algorithms to 

calculate the quantitative rate of change responses 

by changing the design parameters are suggested.

2. Theory

2.1 Modal formulation of damped vibration

  The equation of motion of forced vibration that 

applies an external force to a dynamic system in 

which damping exists and has n degrees of freedom 

is as follows

                 (1)

  Where  is a mass matrix,  a stiffness matrix, 

  a damping matrix,  an external force vector, 

 the displacement vector, and   the  

differentiation with respect to time t. If a linear 

system is assumed, the model displacement  that 
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has generated the physical displacement  , in 

consideration of the overlapping of modes, has the 

following relationship: 

                       (2)

where  is a modal matrix composed of n eigen 

vectors or modal vectors     ⋯  , and can 

be normalized as follows: 

 










⋱


               (3)

Using the eigenvalue  or the square of angular 

natural frequency 
, this can be expressed as an 

eigenvalue problem as follows:

                    (4)

When Eq. (2) is substituted in Eq. (1) and this 

equation is premultiplied by   , the equation of 

motion for modal coordinate  is derived as 

follows:

                (5)

where the damping matrix  and eigenvalue matrix 

  are as follows:

  













⋱


          (6.a)

   















⋱




              (6.b)

  where  is the damping ratio. When Eq. (6.a,b) 

is substituted in Eq, (5), n uncoupled equations of 

motion are derived as follows:


 

      ⋯       (7)

  In Eq. (7), the external force term of the right 

side is expressed as follows:

 
  




                 (8)

2.2 Dynamic sensitivity and analysis 

process

  An analysis process is required to quantify the 

change of dynamic response, that is, the rate of 

change of displacement, when the system design 

parameter   ⋯ is changed. To that end, 

when Eq. (2) is differentiated with respect to the 

design parameter , the rate of change of 

displacement can be obtained as follows:




 

  






 


           (9)

where the first term of the right side is the change 

rate of the modal vector for the design parameter 

and can be calculated by using the difference 

between the reference vector and the modified 

vector as the numerator and the difference  

between the reference design parameter  and the 

changed design parameter as the denominator. In 

other words, the rate of change of the modal vector 

and the eigenvalue using the finite difference 

method can be expressed as follows:




≈

  
            (10)




≈

 
           (11)

  Regarding the second term of the right side in 
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Eq. (9), the following differential equation can be 

derived by differentiating Eq. (5) with respect to the 

design parameter .






















 






   (12)

  In addition, Eq. (14) can be derived by 

introducing the following parametric differential 

equation (13.a,b,c) and using Eq. (8). 

 


  


  


          (13.a,b,c)


 

 















 






(14)

  In this formulation of the differential equation for 

the rate of change, it should be noted that the left 

sides in Eqs. (5) and (14) have the same form, but 

the right sides are different. Before a design 

parameter is changed, it has the initial condition of 

    at   . 

  The analysis flowchart is shown in Fig. 1 by 

summarizing the analysis process for determining the 

change rate of displacement due to a change of the 

design parameter. First, the eigenvalue  and 

modal vector  are determined from the Eq. (4) of 

the modal analysis. From Eqs. (10) and (11), the 

rate of change  and  of modal 

vector and eigenvalue for the design parameters are 

calculated, respectively. Here, the damping ratio 

obtained experimentally or theoretically is applied.   

Then  is obtained from the uncoupled modal 

equation of motion (7) and the solution  of the 

differential equation for the change rate is 

determined by calculating the four terms in the right 

side of Eq. (14). The convolution integral can be 

used to determine the solutions  and of each 

differential equation. Here, the forms of  and 

are expressed very differently depending on the 

form of the applied external force. Finally, the rate 

of change of dynamic responses  can be 

calculated by calculating the terms on the right side 

of Eq. (9).

Fig. 1 A flow chart for algorithm for predictions on 

the rate of change of dynamic displacement

Fig. 2 A finite element model for the cantilever  

beam

3. Numerical Analysis

  In this study, the total length of the beam 

  , the length of finite element   , 

the density of material   , the 

modulus of elasticity of the material 

  × , and the damping ratio   

were used. As shown in Fig. 2, the cantilever beam 
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was divided into 20 finite elements, and the nodes 

were numbered from 1 to 21. For example, the 

external forces  and  at the nodal positions of 

two finite elements of the cantilever beam were 

applied as follows:

        ≤  ≤  sec

      sec
      (15)

  For the change of design parameters, the 

cross-sectional area of the cantilever was selected. 

At first, it was a rectangular cross section with an 

area of  × (width×thickness. 

This was changed to a circular cross section with 

the diameter of 5 mm. In addition, various 

external forces were applied independently from 

different nodes. 

  When the above-mentioned rectangular external 

force  is applied to Eq. (5), the dynamic 

displacement   can be determined using the 

convolution integral as follows:

  



                   (16)

×
sin


cos

 

The solution of the first term in the right side of 

Eq. (14) is as follows:

  









            (17)

×
sin


cos

 

  where  is the damping natural frequency. In 

this study, only the cross-sectional area of the beam 

is changed for the initially determined external 

force; thus, there is no change in external force in 

the second term of Eq. (14). As a result, 

disappears and the third term  and the fourth 

term  are expressed as Eqs. (18) and (19), 

respectively:

 



 


  




   (18)

×




cossin

 



 



                 (19)

×










cossin






sin

 


 















sin


cos
























  For design parameters, the material, member 

shape, external force condition, and constraint can 

be considered, but in this study, the member shape 

and external force condition were selected. The 

external force was applied at nodes 3 and 4, which 

are close to the fixed end of the cantilever beam, 

and for the detection of displacement, nodes 10 and 

12 were selected, where a significant change of 

displacement to the free end appears. To observe 

the precision of the derived theoretical value, it was 

compared with the value derived using a commercial 

finite element program.[6] Figs. 3 and 4 show the 

change of displacement for a change in 

cross-sectional area when the diameter of the 

circular cross-section of the cantilever beam was 

changed to   . In Fig. 3, an external force 

of  was applied to node 4, and the change in 

displacement was observed at node 10. In Fig. 4, 

an external force of  was applied to node 3 and 

the change in displacement was observed at node 12.

  Both cases show similar changing trends of 

- 15 -



Seong-Ho Yun : Journal of the Korean Society of Manufacturing Process Engineers, Vol. 20, No. 8

����������������������������������������������������������������������������������������������������������������

displacement, and the displacement change increased 

as the node was closer to the free end, and the 

magnitude of change decreased with time. This is in 

contrast to the undamped case where the maximum 

and minimum values always behave within a 

constant range.[3] Furthermore, a difference from the 

theoretical value occurs at the minimum and 

maximum points of the responses. In the case of 

Fig. 4, the phase appears slightly shifted. This 

difference appears to be caused because the rate of 

change of the eigenvector for the change in 

cross-sectional area and the rate of change of the 

eigenvalue in Eqs. (10) and (11) of the analysis 

algorithm were evaluated using the forward 

difference method.

Fig. 3 Comparisons of the displacement change at 

node 10 by applying 5N at node 4 and by 

changing rectangular area to circular 

diameter 5mm

Fig. 4 Comparisons of the displacement change at 

node 12 by applying 3N at node 3 and by 

changing rectangular area to circular diameter 

5mm

Fig. 5 The displacement change at all nodes by 

applying 5N at node 4, and by changing 

rectangular area to circular diameter 5mm

Fig. 6 The displacement change at all nodes by 

applying 3N at node 3, and by changing 

rectangular area to circular diameter 5mm

  Figs. 5 and 6 show the observations of 

displacement changes at all nodes when the elapsed 

times were 1, 2, and 3 seconds in the same input 

and output conditions as those in Figs. 3 and 4 

when the diameter of the circular cross section was 

changed to the same value of   .

4. Conclusions

  This study formulated and analyzed the forced 

vibration with damping for cantilever beams to 

predict the change rate of dynamic responses by 

changing the design parameters and obtained the 

following conclusions.
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(1) A second-order differential algebraic equation 

that expresses the sensitivity of dynamic 

displacements with damping was used through 

the change in the cross-sectional shape for the 

change of design parameters. Consequently, an 

analysis process to identify the sensitivity of 

displacement was suggested.

(2) The rate of change of the dynamic displacement 

at some or all nodes were observed regarding 

the detection positions of dynamic displacements 

by setting various external force application 

positions and magnitudes of external force. It 

was observed that the  rate of change increased 

and then decreased as the detection position 

moved closer to the free end.

(3) A phase shift and differences in maximum and 

minimum values were observed when compared 

with the result obtained from a commercial 

finite element program. This suggests that an 

improvement of the evaluation method for rates 

of change of eigenvalue and eigenvector is 

required.

(4) This study laid the foundation for identifying 

the sensitivity of dynamic response in a bonded 

structure which there exist iconnection parts 

accompanied by a damping function.
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