• 제목/요약/키워드: Modal Coordinates

검색결과 61건 처리시간 0.023초

모드좌표와 절대절점좌표를 혼용한 동역학 해석기법에 관한 연구 (Study on the Dynamic Analysis Method using the Modal Coordinates and the Absolute Nodal Coordinates)

  • 손정현;유완석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1730-1735
    • /
    • 2003
  • In this paper, the absolute nodal coordinate formulation was introduced to describe the large deformation problems. And also, the modal coordinates were employed to represent the small elastic deformation. A new hybrid formulation was developed to combine the modal coordinates and the absolute nodal coordinates. A spherical joint and the DOT1 constraint were developed to carry out the numerical simulation of mechanical systems with kinematic joints. A beam example was suggested to show the new formulation. The simulation results using the modal coordinates and the absolute nodal coordinates show a good agreement to the experiments.

  • PDF

변조 좌표계를 이용한 비대칭 회전체계의 일반화된 모드해석 (Generalized Modal Analysis of Asymmetrical Rotor System Using Modulated Coordinates)

  • 서정환;홍성욱;이종원
    • 한국소음진동공학회논문집
    • /
    • 제13권10호
    • /
    • pp.813-820
    • /
    • 2003
  • Conventional modal analysis techniques are known to be inappropriate for asymmetrical rotor systems, when the equations of motion are written in the stationary coordinates, due to the presence of time varying parameters. This paper presents a generalized modal analysis method for asymmetrical rotor systems in the stationary coordinates, employing the modulated coordinates and the lambda matrix formulation. A numerical example with a flexible asymmetric rotor model is provided to demonstrate the effectiveness of the proposed modal analysis method. As an application of the proposed method, modal analysis is also performed with an open cracked rotor system.

변조 좌표계를 이용한 비대칭 회전체계의 일반화된 모드해석 (Generalized modal analysis of asymmetrical rotor system using modulated coordinates)

  • 서정환;홍성욱;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.526-531
    • /
    • 2003
  • Conventional modal analysis techniques are known to be inappropriate for asymmetrical rotor systems. when the equations of motion are written in the stationary coordinates, due to the presence of time varying parameters. This paper presents a generalized modal analysis method for asymmetrical rotor systems in the stationary coordinates, employing the modulated coordinates and the lambda matrix formulation. A numerical example with a flexible asymmetric rotor model is provided to demonstrate the effectiveness of the proposed modal analysis method. As an application of the proposed method, modal analysis is also performed with an open cracked rotor system.

  • PDF

변조좌표계를 이용한 비대칭/비등방 회전체의 모드 해석 (Modal analysis of asymmetric/anisotropic rotor system using modulated coordinates)

  • 서정환;홍성욱;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.304-309
    • /
    • 2003
  • A new modal analysis method for rotor systems with periodically time-varying parameters is proposed. The essence of method is to introduce modulated coordinates to derive the equivalent time-invariant equation. This paper presents a modal analysis method using modulated coordinates fur general rotors, of which rotating and stationary parts both possess asymmetric properties. The equation of motion with time-varying parameters is transformed to an infinite order matrix equation with the time-invariant parameters. A theory of modal analysis for the system is presented with the infinite order equation and a couple of reduced order equations. A numerical example with simple asymmetric rotor is provided to demonstrate the effectiveness of the proposed method

  • PDF

다단 연속 회전체 베어링 계의 일반화된 모드 해석 (A Generalized Modal Analysis for Multi-Stepped, Distributed-Parameter Rotor-Bearing Systems)

  • 박종혁;홍성욱
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.525-534
    • /
    • 1999
  • The present paper proposes a generalized modal analysis procedure for non-uniform, distributed-parameter rotor-bearing systems. An exact element matrix is derived for a Timoshenko shaft model which contains rotary inertia, shear deformation, gyroscopic effect and internal damping. Complex coordinates system is adopted for the convenience in formulation. A generalized orthogonality condition is provided to make the modal decomposition possible. The generalized modal analysis by using a modal decomposition delivers exact and closed form solutions both for frequency and time responses. Two numerical examples are presented for illustrating the proposed method. The numerical study proves that the proposed method is very efficient and useful for the analysis of distributed-parameter rotor-bearing systems.

  • PDF

The application of modal filters for damage detection

  • Mendrok, Krzysztof;Uhl, Tadeusz
    • Smart Structures and Systems
    • /
    • 제6권2호
    • /
    • pp.115-133
    • /
    • 2010
  • A modal filter is a tool used to extract the modal coordinates of each individual mode from a system's output. This is achieved by mapping the response vector from the physical space to the modal space. It decomposes the system's responses into modal coordinates, and thus, on the output of the filter, the frequency response with only one peak corresponding to the natural frequency to which the filter was tuned can be obtained. As was shown in the paper (Deraemecker and Preumont 2006), structural modification (e.g. a drop in stiffness or mass due to damage) causes the appearance of spurious peaks on the output of the modal filter. A modal filter is, therefore, a great indicator of damage detection, with such advantages as low computational effort due to data reduction, ease of automation and lack of sensitivity to environmental changes. This paper presents the application of modal filters for the detection of stiffness changes. Two experiments were conducted: the first one using the simulation data obtained from the numerical 7DOF model, and the second one on the experimental data from a laboratory stand in 4 states of damage.

Modal Analysis of Constrained Multibody Systems Undergoing Constant Accelerated Motions

  • Park, Dong-Hwan;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1086-1093
    • /
    • 2004
  • The modal characteristics of constrained multibody systems undergoing constant accelerated motions are investigated in this paper. Relative coordinates are employed to derive the equations of motion, which are generally nonlinear in terms of the coordinates. The dynamic equilibrium position of a constrained multibody system needs to be obtained from the nonlinear equations of motion, which are then linearized at the dynamic equilibrium position. The mass and the stiffness matrices for the modal analysis can be obtained from the linearized equations of motion. To verify the effectiveness and the accuracy of the proposed method, two numerical examples are solved and the results obtained by using the proposed method are compared with those obtained by analytical and other numerical methods. The proposed method is found to be accurate as well as effective in predicting the modal characteristics of constrained multibody systems undergoing constant accelerated motions.

폐쇄계를 포함하는 탄성 기계시스템의 동역학적 해석 (Dynamic Analysis of Flexible Mechanical System)

  • 안덕환;이병훈
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.271-276
    • /
    • 1995
  • This paper presents a systematic method for the dynamic analysis of flexible mechanical systems containing closed kinematic loops. Kinematics between pairs of contiguous flexible bodies is described with the joint coordinates and the deformation modal coordinates. The cut-joint constraint equations associated with the closed kinematic loops are derived, simply using the geometric conditions. The equations of motions are initially written in terms of the joint and modal coordinates using the velocity transformation technique. Lagrange multipliers associated with the cut-joint constraints for closed-loop systems are then eliminated systematically using the generalized coordinate partitioning method, resulting to a minimal set of equations of motion.

자기 베어링과 영구자석 베어링으로 이루어진 시스템의 비 연성 제어 (Decoupled Control of Active and Permanent Magnetic Bearing System)

  • 박상현;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.63-70
    • /
    • 2008
  • In this paper, we propose a bearing redundant coordinates and decoupled PD controller for 5-axes active magnetic bearing system, which consists of two bearing parts such as three-pole hybrid active magnetic bearing for stabilize the radial direction and ring-type permanent magnetic bearing stabilizing in axial and tilting motion. Based on derived system equation with decoupled control scheme, we conduct the modal analysis and measure of modal controllability and observability.

  • PDF

기구학적 구속조건과 탄성요소를 가진 현가계의 모드해석 (Modal Analysis of Suspension System with Kinematic Constraints and Elastic Elements)

  • 이장무;강주석;윤중락;배상우;탁태오
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.110-123
    • /
    • 2000
  • In this Study, the dynamic equation for vibration analysis of mechanical systems with kinematic constraints is derived. This equations are derived in terms of small displacements of Cartesian coordinates, and are applied to compute the dynamic response and the natural modes of the suspension system of a vehicle. The results are validated through the comparison with the results from conventional nonlinear dynamic analysis and modal test.

  • PDF