• Title/Summary/Keyword: Mobile-robot

Search Result 2,532, Processing Time 0.044 seconds

Intelligent Robot Control using Personal Digital Assistants

  • Jaeyong Seo;Kim, Seongjoo;Kim, Yongtaek;Hongtae Jeon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.304-306
    • /
    • 2003
  • In this paper, we propose the intelligent robot control technique for mobile robot using personal digital assistants (PDA). With the proposed technique, the mobile rebot can trace human at regular intervals by the remote control method with PDA. The mobile robot can recognize the distances between it and human whom the robot must follow with both multi-ultrasonic sensors and PC-camera and then, can inference the direction and velocity of itself to keep the given regular distances. In the first place, the mobile robot acquires the information about circumstances using ultrasonic sensor and PC-camera then secondly, transmits the data to PDA using wireless LAN communication. Finally, PDA recognizes the status of circumstances using the fuzzy logic and neural network and gives the command to mobile robot again.

  • PDF

Development of a remote controlled mobile robot system for monitoring nuclear power plant (원전 이동감시 및 방사선 측정용 원격조종 로봇 개발)

  • 구관모;이범희;우희곤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.511-515
    • /
    • 1996
  • A remote controlled mobile robot system has been developed and tested to monitor the radiation area in the nuclear power plant. The mobile robot system operates according to car-driving-like commands and is capable of radiation measurement and visual inspection in unmanned situations under radiation. The robot system is equipped with a radiation sensor and two cameras with appropriate illumination set-ups. The camera with auto-focus function and 8-times zoom lens is mounted on the pan/tilt rotational base and the other is mounted on the front panel of the robot system. All commands regarding the motion of the mobile robot and various sensors are given through the monitoring system which is designed to provide an integrated man-machine interface.

  • PDF

Fuzzy Inference Based Collision Free Navigation of a Mobile Robot using Sensor Fusion (퍼지추론기반 센서융합 이동로봇의 장애물 회피 주행기법)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • This paper presents a collision free mobile robot navigation based on the fuzzy inference fusion model in unkonown environments using multi-ultrasonic sensor. Six ultrasonic sensors are used for the collision avoidance approach where CCD camera sensors is used for the trajectory following approach. The fuzzy system is composed of three inputs which are the six distance sensors and the camera, two outputs which are the left and right velocities of the mobile robot's wheels, and three cost functions for the robot's movement, direction, obstacle avoidance, and rotation. For the evaluation of the proposed algorithm, we performed real experiments with mobile robot with ultrasonic sensors. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

Obstacle Avoidance with curvature trajectory in mobile robot (곡선 궤적을 이용한 mobile robot의 장애물 회피)

  • Lee, Woo-Young;Huh, Dae-Jung;Huh, Uk-Youl;Kim, Young-Geun;Kim, Hak-Il;Lee, Gwan-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2457-2459
    • /
    • 2002
  • In this paper, we describe the way how to create a curvature trajectory where the dynamics of a mobile robot is considered. Synchro-drive motor is used in a mobile robot. And translational and rotational speeds are controlled independently. Using these two speeds, a mobile robot traces a smooth curvature trajectory that consists of circle trajectories to a target point. While trying to avoid obstacles, the robot can be goal-directed using curvature trajectory. Also, while the robot can navigate the trajectory, the maximum speed is controlled to trade off speed and safely.

  • PDF

Application of Herding Problem to a Mobile Robot (이동로봇의 Herding 문제 적용)

  • Kang Min Koo;Lee Jin Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.322-329
    • /
    • 2005
  • This paper considers the application of mobile robot to the herding problem. The herding problem involves a ‘pursuer’ trying to herd a moving ‘evader’ to a predefined location. In this paper, two mobile robots act as pursuer and evader in the fenced area, where the pursuer robot uses a fuzzy cooperative decision strategy (FCDS) in the herding algorithm. To herd evader robot to a predefined position, the pursuer robot calculates strategic herding point and then navigates to that point using FCDS. FCDS consists of a two-level hierarchy: low level motion descriptors and a high level coordinator. In order to optimize the FCDS, we use the multi­thread evolutionary programming algorithm. The proposed algorithm is implemented in the real mobile robot system and its performance is demonstrated using experimental results.

Path Planning of Autonomous Mobile Robot Based on Fuzzy Logic Control (퍼지로직을 이용한 자율이동로봇의 최적경로계획)

  • Park, Jong-Hun;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2420-2422
    • /
    • 2003
  • In this paper, two Fuzzy Logics for path planning of an autonomous mobile robot are proposed. If a target point is given, such problems regarding the velocity and object recognition are closely related with path to which the mobile robot navigates. Therefore, to ensure safety navigation of the mobile robot for two fuzzy logic parts, path planning considering the surrounding environment was performed in this paper. First, feature points for local and global path are determined by utilizing Cell Decomposition off-line computation. Second, the on-line robot using two Fuzzy Logics navigates around path when it tracks the feature points. We demonstrated optimized path planning only for local path using object recognition fuzzy logic corresponds to domestic situation. Furthermore, when navigating, the robot uses fuzzy logic for velocity and target angle. The proposed algorithms for path planning has been implemented and tested with pioneer-dxe mobile robot.

  • PDF

A Study on the Map-Building of a Cleaning Robot Base upon the Optimal Cost Function (청소로봇의 최적비용함수를 고려한 지도 작성에 관한 연구)

  • Kang, Jin Gu
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper we present a cleaning robot system for an autonomous mobile robot. Our robot performs goal reaching tasks into unknown indoor environments by using sensor fusion. The robot's operation objective is to clean floor or any other applicable surface and to build a map of the surrounding environment for some further purpose such as finding the shortest path available. Using its cleaning robot system for an autonomous mobile robot can move in various modes and perform dexterous tasks. Performance of the cleaning robot system is better than a fixed base redundant robot in avoiding singularity and obstacle. Sensor fusion using the clean robot improves the performance of the robot with redundant freedom in workspace and Map-Building. In this paper, Map-building of the cleaning robot has been studied using sensor fusion. A sequence of this alternating task execution scheme enables the clean robot to execute various tasks efficiently. The proposed algorithm is experimentally verified and discussed with a cleaning robot, KCCR.

Optimal Path Planning of Autonomous Mobile Robot Utilizing Potential Field and Fuzzy Logic (퍼지로직과 포텐셜 필드를 이용한 자율이동로봇의 최적경로계획법)

  • Park, Jong-Hoon;Lee, Jae-Kwang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.11-14
    • /
    • 2003
  • In this paper, we use Fuzzy Logic and Potential field method for optimal path planning of an autonomous mobile robot and apply to navigation for real-time mobile robot in 2D dynamic environment. For safe navigation of the robot, we use both Global and Local path planning. Global path planning is computed off-line using sell-decomposition and Dijkstra algorithm and Local path planning is computed on-line with sensor information using potential field method and Fuzzy Logic. We can get gravitation between two feature points and repulsive force between obstacle and robot through potential field. It is described as a summation of the result of repulsive force between obstacle and robot which is considered as an input through Fuzzy Logic and gravitation to a feature point. With this force, the robot fan get to desired target point safely and fast avoiding obstacles. We Implemented the proposed algorithm with Pioneer-DXE robot in this paper.

  • PDF

Development of Experimental Mobile Robots for Robotics Engineering Education by Using LEGO MINDSTORM (이동로봇을 중심으로 LEGO MINDSTORM을 응용한 로봇공학 교육용 실습 로봇개발)

  • Park, June-Hyung;Jung, Seul
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • This paper introduces several mobile robots developed by using LEGO MIDSTORM for experimental studies of robotics engineering education. The first mobile robot is the line tracer robot that tracks a line, which is a prototype of wheel-driven mobile robots. Ultra violet sensors are used to detect and follow the line. The second robot system is a two-wheel balancing robot that is somewhat nonlinear and complex. For the robot to balance, a gyro sensor is used to detect a balancing angle and PD control is used. The last robot system is a combined system of a line tracer and a two-wheel balancing robot. Sensor filtering and control algorithms are tested through experimental studies.

Localization for Mobile Robot Navigation using Color Patches Installed on the Ceiling (천정 부착 칼라 패치 배열을 이용한 이동로봇의 자기위치 인식)

  • Wang, Shi;Chen, Hong-Xin;Strzelecki, Michal;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.156-160
    • /
    • 2008
  • A localization system to estimate the position as well as movement direction of mobile robots is proposed in this paper. This system implements a camera fixed on a robot and color patches evenly distributed and mounted on the planar ceiling. Different permutations of patch colors code information about robot localization. Thus, extraction of color information from patch images leads to estimation of robot position. Additionally, simple geometric indicators are combined with patch colors to estimate robot's movement direction. Since only the distribution of patch colors has to be known, the analysis of patch images to is relatively fast and simple. The proposed robot localization system has been successfully tested for navigation of sample mobile robot. Obtained test results indicate the robustness and reliability of proposed technique for robot navigation.