• Title/Summary/Keyword: Mobile Sensors

Search Result 910, Processing Time 0.024 seconds

Intelligent Hexapod Mobile Robot using Image Processing and Sensor Fusion (영상처리와 센서융합을 활용한 지능형 6족 이동 로봇)

  • Lee, Sang-Mu;Kim, Sang-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.365-371
    • /
    • 2009
  • A intelligent mobile hexapod robot with various types of sensors and wireless camera is introduced. We show this mobile robot can detect objects well by combining the results of active sensors and image processing algorithm. First, to detect objects, active sensors such as infrared rays sensors and supersonic waves sensors are employed together and calculates the distance in real time between the object and the robot using sensor's output. The difference between the measured value and calculated value is less than 5%. This paper suggests effective visual detecting system for moving objects with specified color and motion information. The proposed method includes the object extraction and definition process which uses color transformation and AWUPC computation to decide the existence of moving object. We add weighing values to each results from sensors and the camera. Final results are combined to only one value which represents the probability of an object in the limited distance. Sensor fusion technique improves the detection rate at least 7% higher than the technique using individual sensor.

Grid-Based Localization of a Mobile Robot Using Sonar Sensors

  • Lim, Jong-Hwan;Kang, Chul-Ung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.302-309
    • /
    • 2002
  • This paper presents a technique for localization of a mobile robot using sonar sensors. Localization is the continual provision of knowledges of position that are deduced from its a priori position estimation. The environment of a robot is modeled by a two-dimensional grid map. We define a physically based sonar sensor model and employ an extended Kalman filter to estimate positions of the robot. Since the approach does not rely on an exact geometric model of an object, it is very simple and offers sufficient generality such that integration with concurrent mapping and localizing can be achieved without major modifications. The performance and simplicity of the approach are demonstrated with the results produced by sets of experiments using a mobile robot equipped with sonar sensors.

Mobile Robot Localization Using Optical Flow Sensors

  • Lee, Soo-Yong;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.485-493
    • /
    • 2004
  • Open-loop position estimation methods are commonly used in mobile robot applications. Their strength lies in the speed and simplicity with which an estimated position is determined. However, these methods can lead to inaccurate or unreliable estimates. Two position estimation methods are developed in this paper, one using a single optical flow sensor and a second using two optical sensors. The first method can accurately estimate position under ideal conditions and also when wheel slip perpendicular to the axis of the wheel occurs. The second method can accurately estimate position even when wheel slip parallel to the axis of the wheel occurs. Location of the sensors is investigated in order to minimize errors caused by inaccurate sensor readings. Finally, a method is implemented and tested using a potential field based navigation scheme. Estimates of position were found to be as accurate as dead-reckoning in ideal conditions and much more accurate in cases where wheel slip occurs.

An Implementation of Sound Tracking Mobile Robot Using Sound Sensors (사운드 센서를 이용한 음원 추적 이동 로봇의 구현)

  • Woo, Him-Chan;Son, Hyeong-Gon;Lee, Seung-Hun;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • In this paper, we describe an sound tracking mobile robot suitable for areas where GPS is not available. Sound sensors are attached to four sides of the robot in order to locate the person in a danger, and the robot is supposed to move to the yelling person. The traveling distance of the mobile robot is calculated by the encoder attached to the wheel of the mobile robot. The moving direction of the mobile robot is measured by a gyro sensor on the robot. When the person in danger pushes a button of the mobile robot, the mobile robot transmits the trajectory data to a designated server.

Robust Map Building in Narrow Environments based on Combination of Sonar and IR Sensors (좁은 환경에서 초음파 및 적외선 센서를 융합한 강인한 지도작성)

  • Han, Hye-Min;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • It is very important for a mobile robot to recognize and model its environments for navigation. However, the grid map constructed by sonar sensors cannot accurately represent the environment, especially the narrow environment, due to the angular uncertainty of sonar data. Therefore, we propose a map building scheme which combines sonar sensors and IR sensors. The maps built by sonar sensors and IR sensors are combined with different weights which are determined by the degree of translational and rotational motion of a robot. To increase the effectiveness of sensor fusion, we also propose optimal sensor arrangement through various experiments. The experimental results show that the proposed method can represent the environment such as narrow corridor and open door more accurately than conventional sonar sensor-based map building methods.

Coordinate Estimation of Mobile Robot Using Optical Mouse Sensors (광 마우스 센서를 이용한 이동로봇 좌표추정)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.716-722
    • /
    • 2016
  • Coordinate estimation is an essential function for autonomous navigation of a mobile robot. The optical mouse sensor is convenient and cost-effective for the coordinate estimation problem. It is possible to overcome the position estimation error caused by the slip and the model mismatch of robot's motion equation using the optical mouse sensor. One of the simple methods for the position estimation using the optical mouse sensor is integration of the velocity data from the sensor with time. However, the unavoidable noise in the sensor data may deteriorate the position estimation in case of the simple integration method. In general, a mobile robot has ready-to-use motion information from the encoder sensors of driving motors. By combining the velocity data from the optical mouse sensor and the motion information of a mobile robot, it is possible to improve the coordinate estimation performance. In this paper, a coordinate estimation algorithm for an autonomous mobile robot is presented based on the well-known Kalman filter that is useful to combine the different types of sensors. Computer simulation results show the performance of the proposed localization algorithm for several types of trajectories in comparison with the simple integration method.

MSCT: AN EFFICIENT DATA COLLECTION HEURISTIC FOR WIRELESS SENSOR NETWORKS WITH LIMITED SENSOR MEMORY CAPACITY

  • Karakaya, Murat
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3396-3411
    • /
    • 2015
  • Sensors used in Wireless Sensor Networks (WSN) have mostly limited capacity which affects the performance of their applications. One of the data-gathering methods is to use mobile sinks to visit these sensors so that they can save their limited battery energies from forwarding data packages to static sinks. The main disadvantage of employing mobile sinks is the delay of data collection due to relative low speed of mobile sinks. Since sensors have very limited memory capacities, whenever a mobile sink is too late to visit a sensor, that sensor's memory would be full, which is called a 'memory overflow', and thus, needs to be purged, which causes loss of collected data. In this work, a method is proposed to generate mobile sink tours, such that the number of overflows and the amount of lost data are minimized. Moreover, the proposed method does not need either the sensor locations or sensor memory status in advance. Hence, the overhead stemmed from the information exchange of these requirements are avoided. The proposed method is compared with a previously published heuristic. The simulation experiment results show the success of the proposed method over the rival heuristic with respect to the considered metrics under various parameters.

Development of an Intelligent Security Robot System for Home Surveillance (가정용 지능형 경비 로봇 시스템 개발)

  • Park, Jeong-Ho;Shin, Dong-Gwan;Woo, Chun-Kyu;Kim, Hyung-Chul;Kwon, Yong-Kwan;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.810-816
    • /
    • 2007
  • A security robot system named EGIS-SR is a mobile security robot through one of the new growth engine project in robotic industries. It allows home surveillance through an autonomous mobile platform using onboard cameras and wireless security sensors. EGIS-SR has many sensors to allow autonomous navigation, hierarchical control architecture to handle lots of situations in monitoring home surveillance and mighty networks to achieve unmanned security services. EGIS-SR is tightly coupled with a networked security environment, where the information of the robot is remotely connected with the remote cockpit and patrol man. It achieved an intelligent unmanned security service. The robot is a two-wheeled mobile robot and has casters and suspension to overcome a doorsill. The dynamic motion is verified through $ADAMS^{TM}$ simulation. For the main controller, PXA270 based hardware platform based on linux kernel 2.6 is developed. In the linux platform, data handling for various sensors and the localization algorithm are performed. Also, a local path planning algorithm for object avoidance with ultrasonic sensors and localization using $StarGazer^{TM}$ is developed. Finally, for the automatic charging, a docking algorithm with infrared ray system is implemented.

Simultaneous Localization and Mapping of Mobile Robot using Digital Magnetic Compass and Ultrasonic Sensors (전자 나침반과 초음파 센서를 이용한 이동 로봇의 Simultaneous Localization and Mapping)

  • Kim, Ho-Duck;Seo, Sang-Wook;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.506-510
    • /
    • 2007
  • Digital Magnetic Compass(DMC) has a robust feature against interference in the indoor environment better than compass which is easily disturbed by electromagnetic sources or large ferromagnetic structures. Ultrasonic Sensors are cheap and can give relatively accurate range readings. So they ate used in Simultaneous Localization and Mapping(SLAM). In this paper, we study the Simultaneous Localization and Mapping(SLAM) of mobile robot in the indoor environment with Digital Magnetic Compass and Ultrasonic Sensors. Autonomous mobile robot is aware of robot's moving direction and position by the restricted data. Also robot must localize as quickly as possible. And in the moving of the mobile robot, the mobile robot must acquire a map of its environment. As application for the Simultaneous Localization and Mapping(SLAM) on the autonomous mobile robot system, robot can find the localization and the mapping and can solve the Kid Napping situation for itself. Especially, in the Kid Napping situation, autonomous mobile robot use Ultrasonic sensors and Digital Magnetic Compass(DMC)'s data for moving. The robot is aware of accurate location By using Digital Magnetic Compass(DMC).

The Trace Algorithm of Mobile Robot Using Neural Network (신경 회로망을 이용한 Mobile Robot의 추종 알고리즘)

  • 남선진;김성현;김성주;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.267-270
    • /
    • 2001
  • In this paper, we propose the self-autonomous algorithm for mobile robot system. The proposed mobile robot system which is teamed by learning with the neural networks can trace the target at the same distances. The mobile robot can evaluate the distance between robot and target with ultrasonic sensors. By teaming the setup distance, current distance and command velocity, the robot can do intelligent self-autonomous drive. We use the neural network and back-propagation algorithm as a tool of learning. As a result, we confirm the ability of tracing the target with proposed mobile robot.

  • PDF