• Title/Summary/Keyword: Mobile Medical Device

Search Result 109, Processing Time 0.023 seconds

Development of a Digital Otoscope-Stethoscope Healthcare Platform for Telemedicine (비대면 원격진단을 위한 디지털 검이경 청진기 헬스케어 플랫폼 개발)

  • Su Young Choi;Hak Yi;Chanyong Park;Subin Joo;Ohwon Kwon;Dongkyu Lee
    • Journal of Biomedical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.109-117
    • /
    • 2024
  • We developed a device that integrates digital otoscope and stethoscope for telemedicine. The integrated device was utilized for the collection of tympanic membrane images and cardiac auscultation data. Data accumulated on the platform server can support real-time diagnosis of heart and eardrum diseases using artificial intelligence. Public data from Kaggle were used for deep learning. After comparing with various deep learning models, the MobileNetV2 model showed superior performance in analyzing tympanic membrane data, and the VGG16 model excelled in analyzing cardiac data. The classification algorithm achieved an accuracy of 89.9% for eardrums data and 100% for heart sound data. These results demonstrate the possibility of diagnosing diseases without the limitations of time and space by using this platform.

Development of Mobile Application based on ICF(International Classification of Functioning, Disability and Health) for Provision of Assistive Devices for People with Disabilities (ICF를 활용한 효과적인 장애인 재활보조기기 신청 모바일 어플리케이션 개발)

  • Jung, Bong-Keun;Lee, Sung-A;Min, Se-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.377-385
    • /
    • 2014
  • This study is aimed to introduce the newly developed mobile application for effective provision of assistive devices for people with disabilities in South Korea. By combining of ICF code and ISO 9999 code, more effective way of searching user fit assistive device information and selecting appropriate assistive devices were possible. 10 people with visual impairment were recruited for an usability testing. For the data analysis, paired t-test were used and confidence interval was 95%. The result showed newly developed mobile application was more effective in comparison with on-line based assistive device information. The outcome of this study will enhance the provision of assistive devices for people with disabilities more effectively within better user understanding of their needs and compensate for their body function as well as environmental barriers.

Implementation of Dynamic Situation Authentication System for Accessing Medical Information (의료정보 접근을 위한 동적상황인증시스템의 구현)

  • Ham, Gyu-Sung;Seo, Own-jeong;Jung, Hoill;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.31-40
    • /
    • 2018
  • With the development of IT technology recently, medical information systems are being constructed in an integrated u-health environment through cloud services, IoT technologies, and mobile applications. These kinds of medical information systems should provide the medical staff with authorities to access patients' medical information for emergency status treatments or therapeutic purposes. Therefore, in the medical information systems, the reliable and prompt authentication processes are necessary to access the biometric information and the medical information of the patients in charge of the medical staff. However, medical information systems are accessing with simple and static user authentication mechanism using only medical ID / PWD in the present system environment. For this reason, in this paper, we suggest a dynamic situation authentication mechanism that provides transparency of medical information access including various authentication factors considering patient's emergency status condition and dynamic situation authentication system supporting it. Our dynamic Situation Authentication is a combination of user authentication and mobile device authentication, which includes various authentication factor attributes such as emergency status, role of medical staff, their working hours, and their working positions and so forth. We designed and implemented a dynamic situation authentication system including emergency status decision, dynamic situation authentication, and authentication support DB construction. Finally, in order to verify the serviceability of the suggested dynamic situation authentication system, the medical staffs download the mobile application from the medical information server to the medical staff's own mobile device together with the dynamic situation authentication process and the permission to access medical information to the patient and showed access to medical information.

A Camera Image Authentication Using Image Information Copyright Signature for Mobile Device without Distortion (무왜곡 휴대용 단말기 영상정보 권한서명을 이용한 카메라 영상 인증)

  • Han, Chan-Ho;Moon, Kwang-Seok
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.30-36
    • /
    • 2014
  • Quality and resolution of camera in mobile device is improved significantly. In this paper, we propose block-based information hide techniques without image distortion for mobile device to solve image degradation in conventional watermarking methods. Information of image is composed with text such as camera maker, model, date, time, etc. Each text is converted to $8{\times}8$ pixel blocks and is added to the bottom of image. Generally image including block based information for image authentication are compressed using JPEG in mobile device. The vertical line value in JPEG header is modified by original size of image sensor. This technique can hide the block based authentication information using general decoder. In the experimental results, JPEG file size is slightly increased within 0.1% for the proposed block based authentication information encoding. Finally proposed methods can be adopted for various embedded systems using medical image, smart phone and DSLR camera.

Current Developments of Biomedical Mobile Devices for Ubiquitous Healthcare (u-Healthcare를 위한 바이오 단말기의 개발 현황)

  • Lee, Tae-Soo;Hong, Joo-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.185-190
    • /
    • 2009
  • Biomedical mobile devices for ubiquitous healthcare consist of biomedical sensors and communication terminal. They have two types of configuration. One is the sensor-network type device using wired or wireless communication with intelligent sensors to acquire biomedical data. The other is the sensor embedded type device, where the data can be acquired directly by itself. There are many examples of sensor network type, such as, fall detection sensor, blood glucose sensor, and ECG sensors networked with commercial PDA phone and commercial phone terminal for ubiquitous healthcare. On the other hand, sensor embedded type mounts blood glucose sensor, accelerometer, and etc. on commercial phone. However, to enable true ubiquitous healthcare, motion sensing is essential, because users go around anywhere and their signals should be measured and monitored, when they are affected by the motion. Therefore, in this paper, two biomedical mobile devices with motion monitoring function were addressed. One is sensor-network type with motion monitoring function, which uses Zigbee communication to measure the ECG, PPG and acceleration. The other is sensor-embedded type with motion monitoring function, which also can measure the data and uses the built-in cellular phone network modem for remote connection. These devices are expected to be useful for ubiquitous healthcare in coming aged society in Korea.

Implementation of ISO/IEEE 11073-10404 Monitoring System Based on U-Health Service (유헬스 서비스 기반의 ISO/IEEE 11073-10404 모니터링 시스템 구현)

  • Kim, Kyoung-Mok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.625-632
    • /
    • 2014
  • The u-health service is using portable device such as smart device and it consists of small computing device. The u-health service carry out same performance with desktop computer. We designed message structure based on Bluetooth HDP. This message structure is used to transmit patient's biometric data on the smart device of medical team, patient and family over the mobile network environment. ISO/IEEE 11073 PHD standard was defined based on the method of communication between the agent and the manager. And We are confirmed the reliable transmission of biometric data at the smart device by implementing the android OS based patient information monitoring application to check the status of patient for medical team, patient and family.

A Design and Implementation of Mobile Healthcare System based on Smart Gateway (스마트 게이트웨이 기반 모바일 헬스케어시스템의 설계 및 구현)

  • Kang, Sung-In;Oh, Am-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1970-1976
    • /
    • 2012
  • Home healthcare system has lot of things to do for the integration with medical instruments in the sense of standardization. We will design and implement mobile healthcare system based on smart gateway thru adaptation of ISO/IEEE 11073, and HL7 standard. And also we are willing to research heart rate monitor, pulse-oxygen meter and ECG monitor in order to develop mobile healthcare system for medical appliance. We studied the connection of standard medical devices, i.e, continua health alliance under the Android 4.x Bluetooth HDP(Health Device Profile) environments. We also tried to implement healthcare system which can support diagnosis for healthcare provider and user based on HL7 standard.

Design of Filter to Reject Motion Artifacts of PPG Signal by Using Two Photosensors

  • Lee, Ju-Won;Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.91-95
    • /
    • 2012
  • The photoplethysmography (PPG) signal measured from a mobile healthcare device contains various motion artifacts occurring from a patient’s movements. Recently, to reject the motion artifacts, the method of using an acceleration sensor was suggested, but such sensors are very expensive. Therefore, this study deals with a novel sensor device to replace the acceleration sensor, and evaluated the performance of the proposed sensor experimentally. In the results of the experiments, it is shown that the proposed sensor device can reconstruct the PPG signal despite the occurrence of motion artifacts, and also that the variation rate in heart rate analysis was 1.22%. According to the experimental results, the proposed method can be applied to design a low-cost device.

Design and Implement a Gateway Based on Mobile Device and a Web Monitoring System for u-Healthcare Service (u-Healthcare 서비스를 위한 모바일 장치 기반 게이트웨이 및 웹 모니터링 시스템 설계 및 구현)

  • Kim, Ji-Hoon;Lee, Chae-Woo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.3
    • /
    • pp.126-133
    • /
    • 2009
  • There are already many researches providing u-Healthcare service, but they have left problems to be improved. First of all, the transmission range between sensor nodes and the gateway are restricted. Hence, patients feel uncomfortable because of they need to possess or locate closed to a gateway all the time when they aggregates their medical data. Also, the existing systems have not considered life environment that is important to analyze patient's diseases. Moreover, a guardian need to located close to patient or possess a mobile device that monitors a patients' status in real time when they are in outdoor. In this research, we present multi-hop packet transfer algorithm and compilation of life environment which help improve the problem of the existing researches. Likewise, we designed and implemented a medical information database and a real-time web monitoring system that manage patients' personal history and monitor a patients' status in real time. In this paper, we design and implement the u-Healthcare system based on mobile environment and we present a result when we tested our u-Healthcare system in scenario environment.

  • PDF

Bio-Signal Acquisition System Using Mobile Device (휴대용 개인 정보 단말기를 이용한 생체신호 획득 시스템)

  • Kim Hyung-Bae;Kwon Man-Jun;Cha Eun-Jong;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.349-354
    • /
    • 2005
  • In this paper, we propose a mobile telemedicine system that acquires more easily and analyzes individual's bio-signal using PDA. It is not easy for modern people who live busily, disabled patients, or old people to visit hospital. The major goal of this study is to implement the mobile telemedicine systems that the captured bio-signal from remote hospital or other medical treatment device is transmitted via Bluetooth module in ubiquitous environment, PDA with built-in Bluetooth module receives its data and displays on the screen in various form. By implemented systems, it is possible to compare current bio-signal with historical bio-signal and analyze bio-signal, and it is able to make a self diagnosis and it is available to be examined and treated remote diagnosis by sending stored bio-signal to a medical doctor.