The Multi-access Edge Computing (MEC) paradigm equips network edge telecommunication infrastructure with cloud computing resources. It seeks to transform the edge into an IT services platform for hosting resource-intensive and delay-stringent services for mobile users, thereby significantly enhancing perceived service quality of experience. However, erratic user mobility impedes seamless service continuity as well as satisfying delay-stringent service requirements, especially as users roam farther away from the serving MEC resource, which deteriorates quality of experience. This work proposes a deep reinforcement learning based service mobility management approach for ensuring seamless migration of service instances along user mobility. The proposed approach focuses on the problem of selecting the optimal MEC resource to host services for high mobility users, thereby reducing service migration rejection rate and enhancing service availability. Efficacy of the proposed approach is confirmed through simulation experiments, where results show that on average, the proposed scheme reduces service delay by 8%, task computing time by 36%, and migration rejection rate by more than 90%, when comparing to a baseline scheme.
Sixth generation will exploit satellite, aerial, and terrestrial platforms jointly to improve radio access capability and unlock the support of on-demand edge cloud services in three-dimensional (3D) space, by incorporating mobile edge computing (MEC) functionalities on aerial platforms and low-orbit satellites. This will extend the MEC support to devices and network elements in the sky and forge a space-borne MEC, enabling intelligent, personalized, and distributed on-demand services. End users will experience the impression of being surrounded by a distributed computer, fulfilling their requests with apparently zero latency. In this paper, we consider an architecture that provides communication, computation, and caching (C3) services on demand, anytime, and everywhere in 3D space, integrating conventional ground (terrestrial) base stations and flying (non-terrestrial) nodes. Given the complexity of the overall network, the C3 resources and management of aerial devices need to be jointly orchestrated via artificial intelligence-based algorithms, exploiting virtualized network functions dynamically deployed in a distributed manner across terrestrial and non-terrestrial nodes.
As the 4th industrial revolution progresses, the application of several cutting-edge technologies such as the Internet of Things, big data, and mixed reality (MR) in relation to autonomous ships is being considered in the maritime logistics field. The aim of this study was to apply the concept of a digital twin model based on Human Machine Interaction (HMI) including a digital twin model and the role of an operator to a ship. The role of the digital twin is divided into information provision, support, decision, and implementation. The role of the operator is divided into operation, decision-making, supervision, and standby. The system constituting the ship was investigated. The digital twin system that could be applied to the ship was also investigated. The cloud-based digital twin system architecture that could apply investigated applications was divided into ship data collection (part 1), cloud system (part 2), analysis system/ application (part 3), and MR/mobile system (part 4). A Mixed Reality device HoloLens was used as an HMI equipment to perform a simulation test of a digital twin system of an 8 m battery-based electric propulsion ship.
The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.
5G 이동 통신 서비스가 제공됨에 따라 다양한 서비스를 초저지연으로 사용자에게 제공하려는 노력이 진행되고 있다. 이는 네트워크 코어에서 클라우드 컴퓨팅을 제공하는 대신에 사용자 인근에서 고성능 컴퓨팅 서비스를 제공하는 에지 컴퓨팅에 대한 관심을 불러 일으키고 있다. 본 논문은 에지 컴퓨팅의 실현을 위한 필수 장비인 마이크로 데이터센터의 운영 및 관리 방안을 제시한다. 먼저, 에지 컴퓨팅의 기능 구조와 배치 방안을 제시한다. 다음으로 에지 컴퓨팅을 위한 마이크로 데이터센터의 요구사항과 이에 따른 운영 및 관리 방안을 제시한다. 마지막으로 마이크로 데이터센터의 자원을 효율적으로 관리하기 위해서 수집 및 감시해야 하는 자원 관리 아이템을 제시하고, 에너지 효율을 측정할 수 있는 성능 지표를 제안한다.
IoT(Internet of Things) 디바이스의 사용이 확대됨에 따라 경찰청의 디지털 포렌식 적용 범위가 스마트 홈 영역으로 확대되었다. 이에 따라 스마트 홈 플랫폼 데이터를 수집하기 위해 진행된 기존 연구들은 대부분 모바일 기기의 로컬 데이터 분석과 네트워크 관점의 분석 등의 연구가 주로 수행되었다. 하지만 증거 분석을 위해 유의미한 데이터는 스마트 홈 플랫폼의 클라우드 스토리지에 주로 저장되어있다. 따라서 본 논문에서는 사용자가 헤이 홈 앱 기반의 "헤이 홈 스퀘어" 서비스를 이용할 때 PC에 기록되는 Microsoft Edge, Google Chrome, Mozilia Firefox, Opera와 같은 웹 브라우저들의 쿠키 데이터베이스를 통해 사용자 계정의 accessToken을 획득하여 헤이 홈 Air 환경에서 클라우드에 저장된 데이터의 수집 방안을 연구했다. 데이터는 헤이 홈의 모회사가 제공하는 OpenAPI를 활용해 클라우드로 직접 접근하여 수집하였다. 본 논문에서는 스마트 온·습도 센서, 스마트 도어 센서, 스마트 모션 센서로 환경을 구성하여 실험를 수행했고 날짜 및 장소별 온·습도 데이터, 사용한 디바이스 리스트, 방 내 모션 감지 기록 등의 아티팩트를 수집할 수 있는 것을 확인하였다. 이와 같은 아티팩트 분석 결과를 통해 알 수 있는 사건 당시의 온·습도 등의 정보는 포렌식 수사 과정에서 단서로 활용될 수 있다. 또한 본 논문에서 제안한 OpenAPI를 활용한 클라우드 데이터 수집 방안은 데이터 수집 과정에서 발생할 수 있는 변조 가능성을 배제하고, API를 이용해 결과를 호출하기 때문에 디지털 포렌식의 원칙인 무결성의 원칙과 재현성의 원칙을 따른다.
최근 인공지능 기술의 발전으로 모바일 환경에서 AI 응용을 수행하는 사례가 늘고 있다. 하지만, 모바일 환경은 데스크탑이나 서버에 비해 자원이 제한적이므로 인공지능 워크로드를 모바일에서 효율적으로 수행하기 위한 연구가 최근 주목받고 있다. 대부분의 연구는 컴퓨팅 자원의 제약을 해소하기 위한 엣지 또는 클라우드로의 오프로딩에 초점이 맞추어져 있으며, 스토리지 접근과 관련한 파일 입출력 특성에 관한 연구는 아직까지 널리 이루어지지 않고 있다. 본 논문에서는 모바일 환경에서 딥러닝 애플리케이션의 실행 시 발생하는 파일 입출력 트레이스를 분석하고, 기존 모바일 워크로드와의 차이점에 대해 분석한다. 본 논문의 분석 결과가 딥러닝의 파일 접근 특성을 고려하여 미래의 스마트폰 시스템 소프트웨어를 효율적으로 설계하는 데에 활용되기를 기대한다.
International Journal of Computer Science & Network Security
/
제21권9호
/
pp.1-10
/
2021
The Internet of things (IoT) is the main advancement in data processing and communication technologies. In IoT, intelligent devices play an exciting role in wireless communication. Although, sensor nodes are low-cost devices for communication and data gathering. However, sensor nodes are more vulnerable to different security threats because these nodes have continuous access to the internet. Therefore, the multiparty security credential-based key generation mechanism provides effective security against several attacks. The key generation-based methods are implemented at sensor nodes, edge nodes, and also at server nodes for secure communication. The main challenging issue in a collaborative key generation scheme is the extensive multiplication. When the number of parties increased the multiplications are more complex. Thus, the computational cost of batch key and multiparty key-based schemes is high. This paper presents a Secure Multipart Key Distribution scheme (SMKD) that provides secure communication among the nodes by generating a multiparty secure key for communication. In this paper, we provide node authentication and session key generation mechanism among mobile nodes, head nodes, and trusted servers. We analyzed the achievements of the SMKD scheme against SPPDA, PPDAS, and PFDA schemes. Thus, the simulation environment is established by employing an NS 2. Simulation results prove that the performance of SMKD is better in terms of communication cost, computational cost, and energy consumption.
MMS(Mobile Mapping System) 자료를 이용한 정밀 공간 정보 매핑은 고정밀 3차원 지형 모델 구축, 시설물 관리를 위해 중요하며, 특히 도로 중앙선 매핑 작업은 정밀 도로 지도 구축을 위해 필요하다. 본 연구에서는 MMS LiDAR(Light Detection And Ranging) 자료를 이용하여 정밀 공간 정보인 도로 중앙선을 매핑 하는 반자동화 방법을 개발하였다. 우선 주어진 MMS LiDAR 자료를 기반으로 보간법을 이용하여 반사강도 영상을 제작하고, 에지 검출기를 이용하여 반사강도 영상으로부터 선형 세그먼트들을 추출하였다. 최종적으로 추출된 선형 세그먼트들 중에서 도로 중앙선 세그먼트를 수동으로 선택하였다. 추출된 도로 중앙선의 정확도 검증 결과, 0.065m의 정확도를 보여주었으며, 도로 중앙선이 도로 신호와 인접한 일부 지역에서 에러가 발견되었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권3호
/
pp.874-890
/
2021
With the widespread deployment of the fifth-generation (5G) communication networks, various real-time applications are rapidly increasing and generating massive traffic on backhaul network environments. In this scenario, network congestion will occur when the communication and computation resources exceed the maximum available capacity, which severely degrades the network performance. To alleviate this problem, this paper proposed an intelligent resource allocation (IRA) to integrate with the extant resource adjustment (ERA) approach mainly based on the convergence of support vector machine (SVM) algorithm, software-defined networking (SDN), and mobile edge computing (MEC) paradigms. The proposed scheme acquires predictable schedules to adapt the downlink (DL) transmission towards off-peak hour intervals as a predominant priority. Accordingly, the peak hour bandwidth resources for serving real-time uplink (UL) transmission enlarge its capacity for a variety of mission-critical applications. Furthermore, to advance and boost gateway computation resources, MEC servers are implemented and integrated with the proposed scheme in this study. In the conclusive simulation results, the performance evaluation analyzes and compares the proposed scheme with the conventional approach over a variety of QoS metrics including network delay, jitter, packet drop ratio, packet delivery ratio, and throughput.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.