DOI QR코드

DOI QR Code

Accurate Spatial Information Mapping System Using MMS LiDAR Data

MMS LiDAR 자료 기반 정밀 공간 정보 매핑 시스템

  • CHOUNG, Yun-Jae (Research Institute for Spatial Information Technology, GEO C&I Co., Ltd.) ;
  • CHOI, Hyeoung-Wook (Research Institute for Spatial Information Technology, GEO C&I Co., Ltd.) ;
  • PARK, Hyeon-Cheol (Research Institute for Spatial Information Technology, GEO C&I Co., Ltd.)
  • 정윤재 ((주) 지오씨엔아이 공간정보기술연구소) ;
  • 최형욱 ((주) 지오씨엔아이 공간정보기술연구소) ;
  • 박현철 ((주) 지오씨엔아이 공간정보기술연구소)
  • Received : 2017.12.18
  • Accepted : 2018.01.15
  • Published : 2018.03.31

Abstract

Mapping accurate spatial information is important for constructing three-dimensional (3D) spatial models and managing artificial facilities, and, especially, mapping road centerlines is necessary for constructing accurate road maps. This research developed a semi-automatic methodology for mapping road centerlines using the MMS(Mobile Mapping System) LiDAR(Light Detection And Ranging) point cloud as follows. First, the intensity image was generated from the given MMS LiDAR data through the interpolation method. Next, the line segments were extracted from the intensity image through the edge detection technique. Finally, the road centerline segments were manually selected among the extracted line segments. The statistical results showed that the generated road centerlines had 0.065 m overall accuracy but had some errors in the areas near road signs.

MMS(Mobile Mapping System) 자료를 이용한 정밀 공간 정보 매핑은 고정밀 3차원 지형 모델 구축, 시설물 관리를 위해 중요하며, 특히 도로 중앙선 매핑 작업은 정밀 도로 지도 구축을 위해 필요하다. 본 연구에서는 MMS LiDAR(Light Detection And Ranging) 자료를 이용하여 정밀 공간 정보인 도로 중앙선을 매핑 하는 반자동화 방법을 개발하였다. 우선 주어진 MMS LiDAR 자료를 기반으로 보간법을 이용하여 반사강도 영상을 제작하고, 에지 검출기를 이용하여 반사강도 영상으로부터 선형 세그먼트들을 추출하였다. 최종적으로 추출된 선형 세그먼트들 중에서 도로 중앙선 세그먼트를 수동으로 선택하였다. 추출된 도로 중앙선의 정확도 검증 결과, 0.065m의 정확도를 보여주었으며, 도로 중앙선이 도로 신호와 인접한 일부 지역에서 에러가 발견되었다.

Keywords

References

  1. ArcGIS for Desktop. 2017a. What is lidar data? http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-lidar-data-.htm (Accessed March 21, 2017).
  2. ArcGIS for Desktop. 2017b. What is lidar intensity data? Available at : http://desktop.arcgis.com/en/arcmap/10.3/manage-data/las-dataset/what-is-intensity-data-.htm (Accessed March 21, 2017).
  3. Article Extension. 2017. What is a road centerline? http://articles.extension.org/pages/37952/what-is-a-road-centerline (Accessed March 21, 2017).
  4. Cao, C. and Y. Sun. 2014. Automatic road centerline extraction from imagery using road GPS data. Remote Sensing 6:9014-9033. https://doi.org/10.3390/rs6099014
  5. Cho, W.S., Y.S., Kim and H.J. Chang. 2006. Land cover classification using lidar and optical image. Journal of the Korean Society of Survey, Geodesy, Photogrammetry, and Cartography 24(1): 139-145.
  6. Choi, H. 2005. Evaluation of the optimum interpolation for creating hydraulic model from close range digital photogrammetry. Journal of the Korean Society of Survey, Geodesy, Photogrammetry, and Cartography 23(3):251-260.
  7. Choung, Y.J., H.C. Park and M.H. Jo. 2012. A study on mapping 3D river boundary using the spatial information datasets. Journal of the Korean Association of Geographic Information Studies 15(1):87-98. https://doi.org/10.11108/kagis.2012.15.1.087
  8. Choung, Y. 2015. Development of a dike line selection method using multisspectral orthoimages and topographic LiDAR data taken in the Nakdong river basins. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 33(3):155-161. https://doi.org/10.7848/ksgpc.2015.33.3.155
  9. Choung, Y.J. 2017. Extraction of 3D objects around roads using MMS LiDAR data. Journal of the Korean Association of Geographic Information Studies 20(1):152-161. https://doi.org/10.11108/kagis.2017.20.1.152
  10. Gonzalez, R.C. and R.E. Woods. 2007. Digital image processing, 3rd Edition, Upper Saddle River, NJ, Pearson Education, p.976.
  11. Hu, X. and V. Tao. 2007. Automatic extraction of main road centerlines from high resolution satellite imagery using hierarchical grouping. Photogrammetric Engineering & Remote Sensing 73(9): 1049-1056.
  12. Hu, X., Y. Li, J. Shan, J. Zhang and Y. Zhang. 2014. Road centerline extraction in complex urban scenes from LiDAR data based on multiple features. IEEE Transactions on Geoscience and Remote Sensing 52(11):7448-7456. https://doi.org/10.1109/TGRS.2014.2312793
  13. Hui, Z., Y. Hu, S. Jin and Y. Yevenyo. 2016. Road centerline extraction from airborne LiDAR point cloud based on hierarchical fusion and optimization. ISPRS Journal of Photogrammetry and Remote Sensing 118: 22-36. https://doi.org/10.1016/j.isprsjprs.2016.04.003
  14. Jwa, Y., G. Sohn, J. Won, W. Lee and N. Song. 2015. Railway track extraction from mobile laser scanning data. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 33(2):111-122. https://doi.org/10.7848/ksgpc.2015.33.2.111
  15. Lee, H.S. 2010. Comparison and evaluation of root mean square for parameter settings of spatial interpolation method. Journal of the Korean Association of Geographic Information Studies 13(3): 29-41.
  16. Madeira, S., J. Goncalves and L. Bastos. 2012. Sensor integration in a low cost land mobile mapping system. Sensors 12(3):2935-2953. https://doi.org/10.3390/s120302935
  17. MathWorks. 2017. Edge Detection, Available at: https://kr.mathworks.com/discovery/edge-detection.html (Accessed March 23, 2017).
  18. Miao, Z., W. Shi and H. Zhang. 2014. Road centerline extraction from highresolution imagery based on shape features and multivariate adaptive regression splines. IEEE Geoscience and Remote Sensing Letters 10(3): 583-587. https://doi.org/10.1109/LGRS.2012.2214761
  19. Minh, N., and L. Hien. 2011. Land cover classification using LiDAR intensity data and neural network. Journal of the Korean Society of Survey, Geodesy, Photogrammetry, and Cartography 29(4): 429-438. https://doi.org/10.7848/ksgpc.2011.29.4.429
  20. MOLIT. 2010. Documents of the regulation for road line painting.
  21. Pastucha, E. 2016. Catenary system detection, localization and classification using mobile scanning data. Remote Sensing 8(10):1-22.
  22. Shi, W., Z. Miao and J. Debayle. 2014. An integrated method for urban main-road centerline extraction from optical remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing 52(6):3359-3372. https://doi.org/10.1109/TGRS.2013.2272593
  23. Sairam, N., S. Nagarajan and S. Ornitz. 2016. Development of mobile mapping system for 3D road asset inventory. Sensors 16(3):367-385. https://doi.org/10.3390/s16030367
  24. Soilan, M., B. Riveiro, J. Martinez-Sanchez and P. Arias. 2016. Automatic road sign inventory using mobile mapping systems. Proceedings of the International Achieves of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Prague, Czech Republic, July 12-19, 2016.
  25. Tsai, M.J., and J.Y. Han. 2013. A preliminary study on the road surface feature extraction using MMS collected point clouds. Proceedings of ACRS 2013 Conference, Bali, Indonesia, October 20-24, 2013.
  26. USLegal. 2017. Centerline of a roadway law and legal definition. https://definitions.uslegal.com/c/centerline-of-a-roadway/(Accessed March 21, 2017).

Cited by

  1. 드론영상을 이용한 물체탐지알고리즘 기반 도로균열탐지 vol.18, pp.6, 2018, https://doi.org/10.12815/kits.2019.18.6.155