Browse > Article
http://dx.doi.org/10.4218/etrij.2020-0205

6G in the sky: On-demand intelligence at the edge of 3D networks (Invited paper)  

Strinati, Emilio Calvanese (CEA-Leti)
Barbarossa, Sergio (Sapienza University of Rome, DIET)
Choi, Taesang (Telecommunications & Media Research Laboratory, Electronics and Telecommunications Research Institute)
Pietrabissa, Antonio (Sapienza University of Rome and Space Research Group of CRAT)
Giuseppi, Alessandro (Sapienza University of Rome and Space Research Group of CRAT)
De Santis, Emanuele (Sapienza University of Rome and Space Research Group of CRAT)
Vidal, Josep (Department Signal Theory and Communications, Universitat Politecnica de Catalunya)
Becvar, Zdenek (Faculty of Electrical Engineering, Czech Technical University in Prague)
Haustein, Thomas (Wireless Communications and Networks, Fraunhofer HHI)
Cassiau, Nicolas (CEA-Leti)
Costanzo, Francesca (Sapienza University of Rome, DIET)
Kim, Junhyeong (Telecommunications & Media Research Laboratory, Electronics and Telecommunications Research Institute)
Kim, Ilgyu (Telecommunications & Media Research Laboratory, Electronics and Telecommunications Research Institute)
Publication Information
ETRI Journal / v.42, no.5, 2020 , pp. 643-657 More about this Journal
Abstract
Sixth generation will exploit satellite, aerial, and terrestrial platforms jointly to improve radio access capability and unlock the support of on-demand edge cloud services in three-dimensional (3D) space, by incorporating mobile edge computing (MEC) functionalities on aerial platforms and low-orbit satellites. This will extend the MEC support to devices and network elements in the sky and forge a space-borne MEC, enabling intelligent, personalized, and distributed on-demand services. End users will experience the impression of being surrounded by a distributed computer, fulfilling their requests with apparently zero latency. In this paper, we consider an architecture that provides communication, computation, and caching (C3) services on demand, anytime, and everywhere in 3D space, integrating conventional ground (terrestrial) base stations and flying (non-terrestrial) nodes. Given the complexity of the overall network, the C3 resources and management of aerial devices need to be jointly orchestrated via artificial intelligence-based algorithms, exploiting virtualized network functions dynamically deployed in a distributed manner across terrestrial and non-terrestrial nodes.
Keywords
3D connectivity; 3D services; 5G; 6G; B5G; high-altitude platform stations; mobile edge computing; non-terrestrial communications; satellite; unmanned aerial vehicle;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 X. Li et al., A near-optimal UAV-Aided Radio Coverage Strategy for Dense Urban areas, IEEE Trans. Veh. Technol. 68 (2019), 9098-9109.   DOI
2 BATS Broadband Access via Integrated Terrestrial & Satellite Systems, D2.4 overall integration architecture definition, 2013, available from https://cordis.europa.eu/docs/proje cts/cnect/3/317533/080/deliverables/001-BATSD24FHv1F.pdf
3 V. Jungnickel et al., LTE trials in the return channel over satellite, in Proc. Adv. Satellite Multimedia Syst. Conf. Signal Process. Space Commun. Workshop (Baiona, Spain), Sept. 2012, pp. 238-245.
4 J. Dommel et al., 5G in space: PHY-layer design for satellite communications using non-orthogonal multi-carrier transmission, in Proc. Adv. Satellite Multimedia Syst. Conf. Signal Process. Space Commun. Workshop (Livorno, Italy), Sept. 2014, pp. 190-196.
5 3GPP TR22.811 v16.0.0, Solutions for NR to support non-terrestrial networks (NTN) (release 16), Dec. 2020.
6 3GPP TR36.777 v15.0.0, Study on enhanced lte support for aerial vehicles (release 15), Dec. 2017.
7 3GPP TS36.331 v16.0.0, Resource control (rrc); protocol specification (release 16), (section 5.5.4), Mar. 2020.
8 3GPP TR23.754 v0.1.0, Study on supporting unmanned aerial systems (uas) connectivity, identification and tracking (release 17), Jan. 2020.
9 Google, LOON-Ballon powered internet, 2020, available at https://loon.com/
10 A. Fotouhi, M. Ding, and M. Hassan, Flying drone base stations for macro hotspots, IEEE Access 6 (2018), 19530-19539.   DOI
11 ETSI GS MEC 003 V2.1.1, Multi-access Edge Computing (mec); Framework and Reference Architecture, Jan. 2019.
12 3GPP TS38.211 V16.1.0, NR; Physical channels and modulation, Apr. 2020.
13 T. X. Tran et al., Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges, IEEE Commun. Mag. 55 (2017), 54-61.
14 R. H. Etkin, D. N. C. Tse, and H. Wang, Gaussian interference channel capacity to within one bit, IEEE Trans. Inf. Theory 54 (2008), 5534-5562.   DOI
15 E. De Santis et al., 5g-allstar wireless network simulator, 2020, available at https://github.com/trunk96/wireless-network-simulator
16 3GPP TS38.101-1 V16.2.0, NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone, Jan. 2020.
17 3GPP TS38.101-2 V16.2.0, NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone, Jan. 2020.
18 K. M. Addali et al., Dynamic mobility load balancing for 5G smallcell networks based on utility functions, IEEE Access 7 (2019), 126998-127011.   DOI
19 M. De Mari, E. C. Strinati, and M. Debbah. Two-regimes interference classifier: An interference-aware resource allocation algorithm, in Proc. IEEE Wireless Commun. Netw. Conf. (Istanbul, Turkey), Dec. 2014, pp. 792-797.
20 G. Maral et al., Satellite communications systems: systems, techniques and technology, John Wiley & Sons, Hoboken, NJ, Vol. 2020.
21 J. Plachy et al., Joint positioning of flying base stations and association of users: Evolutionary-based Approach, IEEE Access 7 (2019), 11454-11463.   DOI
22 D. Little, High throughput satellites: Delivering future capacity needs, white paper, 2015.
23 H. Fenech et al., High throughput satellite systems: An analytical approach, IEEE Trans. Aerosp. Electron. Syst. 51 (2015), 192-202.   DOI
24 COST 231 Project, Digital mobile radio: Towards future generation systems, Chapter 4, European Commission, 1998.
25 E. Kalantari et al., Backhaul-aware robust 3d drone placement in 5g+ wireless networks, in Proc. IEEE Int. Conf. Commun. Workshops (Paris, France), May 2017, pp. 109-114.
26 Z. Fei, B. Li, and Y. Zhang, Multiple access mmwave design for uavaided 5G communications, IEEE Wirel. Commun. 26 (2019), 64-71.
27 Y. Zeng, Q. Wu, and R. Zhang, Accessing From the Sky: A Tutorial on UAV Communications for 5G and Beyond, Proc IEEE 107 (2019), 2327-2375.   DOI
28 M. Mozaffari et al., Beyond 5G with UAVs: Foundations of a 3D wireless cellular network, IEEE Trans. Wireless. Commun. 18 (2019), 357-372.   DOI
29 A. A. Nasir et al., UAV-enabled communication using NOMA, IEEE Trans. Commun. 67 (2019), 5126-5138.   DOI
30 J. Jackson, The interplanetary internet [networked space communications], IEEE Spectrum Mag. 42 (2005), 30-35.   DOI
31 3GPP TS22.261 Release 17, v17.2.0, Service requirements for the 5G system; stage 1 (release 17), Mar. 2020.
32 3GPP TR22.822 v16.0.0, Study on using satellite access in 5G; stage 1 (release 16), June 2018.
33 3GPP TR22.811 v15.2.0, Study on New Radio (NR) to support nonterrestrial networks (release 15), Sept. 2019.
34 3GPP TS22.125 v17.1.0, Unmanned Aerial System (UAS) support in 3GPP; stage 1; (release 17), Dec. 2019.
35 J. Kim et al, 5G-ALLSTAR: An integrated satellite-cellular system for 5G and beyond, in Proc. IEEE Wireless Commun. Netw. Conf. Workshops (Seoul, Rep. of Korea), Apr. 2020, https://doi.org/10.1109/WCNCW 48565.2020.9124751.
36 E. Calvanese et al., 5GCHAMPION - Disruptive 5G technologies for roll-out in 2018, ETRI J. 40 (2018), 10-25.   DOI
37 S. Chandrasekharan et al., Designing and implementing future aerial communication networks, IEEE Commun. Mag. 54 (2016), 26-34.   DOI
38 V. Frascolla et al., 5G-MiEdge: Design, standardization and deployment of 5G phase II technologies: MECandmmWaves joint development for Tokyo 2020 Olympic games, in Porc. IEEE Conf. Standards Commun. Netw. (Helsinki, Finland), Sept. 2017, pp. 54-59.
39 S. Barbarossa et al., Enabling effective mobile edge computing using millimeterwave links, in Proc. IEEE Int. Conf. Commun. Workshops (Paris, France), May 2017, pp. 367-372.
40 S. C. Arum, D. Grace, and P. D. Mitchell, A review of wireless communication using high-altitude platforms for extended coverage and capacity, Comput. Commun. 157 (2020), 232-256.   DOI
41 A. Fotouhi et al., Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges, IEEE Communications Surveys & Tutorials 21 (2019), 3417-3442.   DOI
42 Y. Zeng, R. Zhang, and T. J. Lim, Wireless communications with unmanned aerial vehicles: Opportunities and challenges, IEEE Commun. Mag. 54 (2016), 36-42.
43 J. Lyu et al., Placement optimization of UAV-mounted mobile base stations, IEEE Commun. Lett. 21 (2017), 604-607.   DOI
44 P. S. Bithas et al., A survey on machine-learning techniques for UAV-based communications, Sensors 19 (2019), 5170:1-39.   DOI
45 F. Cheng et al., Learning-based user association in multi- UAV emergency networks with ground D2D, in IEEE Int. Conf. Commun. Workshops (Shanghai, China), May 2019, pp. 1-5.
46 A. J. Ferrer, J. M. Marques, and J. Jorba, Towards the decentralised cloud, ACM Comput. Surv. 51 (2019), 1-36.
47 M. Mehrabi et al., Device-enhanced MEC: Multi-access edge computing (MEC) aided by end device computation and caching: A survey, IEEE Access 7 (2019), 166079-166108.   DOI
48 L. Hu et al., Ready player one: UAV-clustering-based multi-task offloading for vehicular VR/AR gaming, IEEE Netw. 33 (2019), 42-48.
49 M. Chen et al., Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience, IEEE J. Sel. Areas Commun. 35 (2017), 1046-1061.   DOI
50 T. Chen et al., Learning and management for internet of things: Accounting for adaptivity and scalability, Proc IEEE 107 (2019), 778-796.   DOI
51 B. Van Der Bergh, A. Chiumento, and S. Pollin, LTE in the sky: trading off propagation benefits with interference costs for aerial nodes, IEEE Commun. Mag. 54 (2016), 44-50.
52 D. Demmer et al., Block-filtered ofdm: a novel waveform for future wireless technologies, in Proc. IEEE Int. Conf. Commun. (Paris, France), May 2017, pp. 1-6.
53 F. Costanzo, P. D. Lorenzo, and S. Barbarossa, Dynamic resource optimization and altitude selection in UAV-based multi-access edge computing, in Proc. IEEE Int. Conf. Acoustics, Speech Signal Process. (Barcelona, Spain), May 2020, pp. 4985-4989.
54 F. Delli Priscoli et al., Traffic steering and network selection in 5g networks based on reinforcement learning, in Eur. Contr. Conf. (Saint Petersburg, Russia), May 2020, pp. 595-601.
55 M. Gapeyenko et al., Flexible and reliable UAV-assisted backhaul operation in 5G mmWave cellular networks, IEEE J. Sel. Areas Commun. 36 (2018), 2486-2496.   DOI
56 S. Jeong, O. Simeone, and J. Kang, Mobile edge computing via a UAV-mounted cloudlet: Optimization of bit allocation and path planning, IEEE Trans. Veh. Technol. 67 (2018), 2049-2063.   DOI
57 J. Xiong, H. Guo, and J. Liu, Task offloading in UAV-aided edge computing: Bit allocation and trajectory optimization, IEEE Commun. Lett. 23 (2019), 538-541.   DOI
58 J. Zhang et al., Stochastic computation ofloading and trajectory scheduling for UAV-assisted mobile Edge Computing, IEEE Internet Things J. 6 (2019), 3688-3699.   DOI
59 X. Hou et al., Fog based computation offloading for swarm of drones, in Proc. ICC 2019-2019 IEEE Int. Conf. Commun. (Shanghai, China), 2019, pp. 1-7.
60 Z. Yang et al., Energy efficient resource allocation in UAV-enabled mobile edge computing networks, IEEE Trans. Wireless Commun. 18 (2019), 4576-4589.   DOI
61 N. Di Pietro and E. C. Strinati, An optimal low-complexity policy for cache-aided computation offloading, IEEE Access 7 (2019), 182499-182514.   DOI
62 E. C. Strinati et al., 6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication, IEEE Veh. Technol. Mag. 14 (2019), 42-50.   DOI
63 H. Ahmadi, A novel airborne self-organising architecture for 5g+ networks, in Proc. IEEE Veh. Technol. Conf. (Toronto, Canada), Sept. 2017, pp. 1-5.