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Enhancing Service Availability in Multi-Access 
Edge Computing with Deep Q-Learning
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ABSTRACT

The Multi-access Edge Computing (MEC) paradigm equips network edge telecommunication infrastructure with cloud computing 

resources. It seeks to transform the edge into an IT services platform for hosting resource-intensive and delay-stringent services for mobile 

users, thereby significantly enhancing perceived service quality of experience. However, erratic user mobility impedes seamless service 

continuity as well as satisfying delay-stringent service requirements, especially as users roam farther away from the serving MEC resource, 

which deteriorates quality of experience. This work proposes a deep reinforcement learning based service mobility management 

approach for ensuring seamless migration of service instances along user mobility. The proposed approach focuses on the problem of 

selecting the optimal MEC resource to host services for high mobility users, thereby reducing service migration rejection rate and 

enhancing service availability. Efficacy of the proposed approach is confirmed through simulation experiments, where results show that 

on average, the proposed scheme reduces service delay by 8%, task computing time by 36%, and migration rejection rate by more 

than 90%, when comparing to a baseline scheme.

☞ keyword : Edge Computing, Service Mobility, Service Availability, Beyond 5G, Deep Reinforcement Learning

1. Introduction

Beyond 5G (B5G) applications like autonomous driving 

require stringent ultra-Reliable Low Latency Communications 

(uRLLC) to meet Quality of Experience (QoE) expectations 

[1]. Multi-access Edge Computing (MEC) is amongst key 

enablers of B5G mobile networks and applications [2]. MEC 

provides data and computational resources at the network 
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edge in proximity to users. This enables uRLLC application 

users like autonomous vehicles to offload computationally 

intensive tasks for expedited computing, thereby significantly 

reducing access latency. The substantial reduction in service 

access latency could enhance response times for the uRLLC 

applications which require swift response.

The uRLLC services offloaded to Service Containers 

(SCs) on MEC hosts may face severe performance 

degradation due to erratic vehicle mobility and MEC node 

resource constraints [3]. As a solution, service migration is 

proposed for seamless mobility of SCs to a suitable MEC 

host following vehicle mobility [4]. Although it enhances 

perceived QoE, the migration process imposes significant 

costs on both network and computing resources. Deciding 

when and where to migrate an SC to reduce migration 

rejection probability and service downtime are the main 

challenges in MEC service mobility management [3]. 

Existing strategies typically suffer from the highly dynamic 

nature of the MEC environment, and thus yield below par 

results in performance measures like MEC service 

availability.

Studies by [4],[5] proposed service mobility strategies for 

enhancing QoE with minimum costs based on Markov 
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Decision Process (MDP) techniques. The service mobility 

strategies discussed in  [6],[7] exploit Deep Reinforcement 

Learning (DRL), where a Deep Q-Network (DQN) based 

agent learns the optimal migration policy by perpetually 

interacting with the MEC environment. Both studies capture 

a tradeoff between perceived QoE and service migration cost 

in terms of time. The studies focus on deciding when to 

migrate the SC for ensuring service continuity and enhancing 

perceived QoE. Both fall short of comprehensively 

addressing the where to migrate problem, which deals with 

selection of optimal MEC hosts for hosting the migrated SC. 

This leaves a gap with severe consequences that include 

increased service migration rejection rate. Rejected migration 

due to insufficient resources increases the undesirable service 

downtime as the mobility management strategy attempts to 

identify an alternative ES for hosting the rejected SC.

This study proposes DQN based Service Mobility 

Management (DQN-SEMM), a rejection-aware service 

service migration strategy based on Deep Q-Network (DQN). 

It tackles the MEC service migration decision problem using 

migration policy and MEC host selection policy. Besides 

deciding when to relocate the SC, the proposed DQN-SEMM 

also learns optimal selection of MEC host for service 

placement. Among others, the SC placement component uses 

resource utilization of neighboring hosts to select the optimal 

one. Most importantly, it imposes a penalty for each rejected 

service migration. The resulting server selection affects QoE 

of vehicle and is thus associated with a reward calculation 

for migration decision policy, which is a function of QoE 

and the migration cost. To this end, the main contributions 

of this work are summarized as follows:

 We propose a DQN-based Service Mobility 

Management (DQN-SEMM) system to seamlessly 

relocate service instances with marginal rejection rate.

 Development of a comprehensive simulation 

environment for evaluating performance of the proposed 

DQN-SEMM and baseline scheme.

Organization of this papers is as follows: section 2 

presents a review of recent studies on service migration in 

the MEC paradigm. The proposed system is outlined under 

section 3 whereas performance evaluation results are 

presented in Section 4. Section 5 concludes this study.

2. Related Works

Various studies [8],[5] have devised service mobility 

strategies using MDP-based techniques with distance as the 

main criterion. A priority-induced strategy by [9] relocates 

services when higher-priority requests arrive at the MEC 

host. It employs an MDP-based method to select optimal 

servers to minimize migration costs. The strategy in [10] 

formulated the migration problem using MDP framework, 

aiming to minimize task completion time. However, it does 

not address the optimal server selection problem. These MDP 

based strategies require complete knowledge of environment 

transition probabilities, which can hardly be obtained with 

accuracy. In addition, they disregard important attributes such 

as resource availability during decision-making. Meanwhile, 

other studies [11],[12] have proposed prediction-based 

techniques for addressing the service mobility problem. 

However, such strategies require prior knowledge of various 

parameters, and their performance is highly dependent on 

prediction accuracy of these parameters.

A decentralized DQN-based scheme in [13] learns an 

optimal migration policy to achieve a trade-off between 

service delay and energy consumption in multi-user MEC 

environments. A distributed task migration method uses 

multi-agent DQN to enhance QoS while minimizing energy 

consumed by MEC infrastructure when migrating [14]. 

Moreover, the proposed scheme always selects the MEC 

server within the current location of vehicle as the best 

destination for service migration. Nonetheless, these 

strategies have limitations in terms of prioritizing migration 

cost and energy consumption reduction while overlooking 

key factors like service downtime and bandwidth 

consumption. This results in a trade-off that tilts towards cost 

reduction by reducing the number of service migrations at 

the expense of service QoE.

A closely related study [6] proposed DQN-based 

Location-aware (DQN-LOC) mechanism for mostly deciding 

when to relocate the service. DQN-LOC learns the optimal 

migration decision policy from past experiences gathered 

while interacting with its environment. The agent observes 

MEC system current environment state, defined as the 

distance between MEC host and vehicle serving base station 

(BS) locations. Thereafter, it decides the best action between 

migration and no migration. If it has decided to migrate, the 

MEC system relocates task data to the MEC server in the 
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(Figure 1) Illustration of MEC environment

current location of vehicle, assuming the server has sufficient 

computing resources. This assumption is a major limitation 

since it reduces the network delay but causes significant 

computing delay when the associated MEC host is 

overloaded. It also imposes extended service disruption due 

to longer migration time, resulting in failed migration. In any 

case, taking resource availability into account is vital during 

service migration and MEC selection decisions.

So far, existing strategies seemingly provide notable 

improvements toward efficient seamless service mobility 

management, thereby facilitating the MEC paradigm to meet 

service quality demands for different vehicles. Nevertheless, 

a DQN-SEMM strategy is necessary to alleviate limitations 

observed in existing studies, especially in terms of optimal 

MEC host selection during service migration. In a case where 

the MEC host attached to the local BS is regarded as optimal 

to host the migrated service, disregarding factors such as 

long-term workload variations that could have an adverse 

impact on QoE for vehicle. Thus, our proposed DQN-based 

seamless service migration scheme seeks to balance the 

trade-off between migration costs and vehicle perceived QoE 

by deciding when to migrate, and most importantly, selecting 

an optimal server to host the service and ensure enhanced 

QoE.

3. Proposed System

3.1 System Model

Figure 1 depicts a model of the MEC environment. It 

comprises a set        of MEC hosts. The   

hosts are collocated with cellular network base stations 

(BSs), creating a network of distributed MEC servers. The 

servers are equipped with cloud computing resources to host 

SCs for a set     of vehicles. Every   

instantiates a resource-intensive and delay-stringent SC, 

denoted as , deployed on the closest MEC host. The role 

of SC  is to coordinate the computation of tasks offloaded 

by vehicle   to its associated  for expedited computation. 

Each task   is identified by the tuple  that defines its 

properties. In  , the property represents size of 

input data for the task;   is the amount of computing 

power required to process the task; and   refers to 

maximum task execution deadline.

Each vehicles offloads tasks to the serving MEC host 

through the associated BS over the RAN [3]. The uplink 

transmission rate achieved by vehicle ∈  when 

transmitting tasks to the serving BS is given by: 

   ∙⌊
⌋∙  (1) 

where  is resource block bandwidth,   represents 

total number of resource blocks;  denotes the number of 

vehicles connected to the serving BS; and   

corresponds to the received signal-to-noise ratio, given by:

 

∙ ∙


(2)

with  denoting constant transmission power of vehicle,  

defines channel power gain, and   is noise power. 

Moreover,  is the distance from location of vehicle   to 

its serving BS, while  denotes the path loss exponent, and 

 is the fractional channel inversion control component. 

Using (1), the average wireless transmission delay 

experienced by   in time slot  while offloading task to its 

associated MEC host is:


  


(3)
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where    denotes size of task being offloaded by   

during time slot . Downlink transmission delay is not 

entertained in this paper as the size of processed task from 

the MEC server is usually negligible [15]. 

In case SC  is deployed on a distant MEC server, 

offloaded tasks traverse the network backhaul for processing 

at the MEC host. The tasks experience transmission, 

propagation, and queueing delays. Transmission delay is a 

function of bandwidth and size of task input data,  , 

being transmitted to the MEC host for processing. In 

addition, the round-trip propagation, processing, and queuing 

delays are determined by hop count between the associated 

BS and the serving edge server of  . Therefore, the backhaul 

delay for computation offloading is given by:


  





                 (4)

where  is wired link bandwidth in the network 

backhaul,  is a positive coefficient while   quantifies 

the number of hops between source and destination

During timeslot , vehicles move to different locations 

according to random walk mobility model. When   connects 

to another BS, the proposed DQN-SEMM decides whether to 

relocate  in order to enhance service availability. Thus, it 

selects the most optimal  in terms of both resource 

availability and geographical location to host the migrated 

SC. The selection phase is critical because sometimes the 

selected MEC node may reject the migrated SC due to 

resource availability constraints as it is noted that hosts in the 

MEC paradigm are equipped with limited resources.

Meanwhile, optical fiber communication links in the 

network backhaul interconnect the MEC hosts to facilitate 

rapid mobility of the SCs. The target SC is transferred to the 

selected  using backhaul links. It incurs considerable 

migration costs which mainly depend on the size of migrated 

, wired network bandwidth, propagation delay, and the 

hop count between MEC hosts. Similar to [3], the cost of 

moving service instance objects between source and 

destination MEC hosts is given by:

 




                 (5)

where 
 is the size of service container for  . 

Multiple SCs share computing resources on the host to 

rapidly process the offloaded tasks. The computing capacity 

of MEC host  is denoted as  , quantified in Million 

Instructions Per Second (MIPS). The capacity is evenly 

shared by the hosted SCs. Thus, computing delay 

experienced by an offloaded task of   on MEC node  is 

given by:

    
   




                 (6)

where   represents amount of computing power in 

MIPS allocated to the task of   as coordinated by its SC 

.  Combining (3), (4), and (6), the service delay for a task 

offloaded by   is given by:

  
  

  
      (7)

The proposed DQN-SEMM employs Deep reinforcement 

Learning (DRL) to efficiently make service migration 

decision and selecting the optimal for maintaining service 

and enhancing availability for high-mobility users.

3.2 DQN-SEMM Method

The proposed DQN-SEMM method aims to efficiently 

manage service mobility for enhancing service availability 

which affects QoE. DQN-SEMM employs a DQN-based RL 

(RL) agent to competently learn the optimal policy deciding 

when to migrate and selecting the optimal MEC host. 

Formulation of the service mobility problem follows the RL 

framework. In the context of DQN-SEMM, the key elements 

of RL framework, namely, state, action, and reward function 

are defined as follows.

State: The agent in DQN-SEMM interacts with the MEC 

environment through states, observed at discrete time steps, 

. During time slot , the agent observes a state, 

    , comprising distance, 
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 , from the BS of   to that of its serving MEC host; 

amount of computing resource in vector,  , currently 

available on each MEC node, and vector containing number 

of vehicles in the current cell, . Due to the dynamic 

nature of MEC environments, the proposed DQN-SEMM 

exploits Queuing theory to estimate average available 

resource on candidate MEC hosts. 

Action: In DQN-SEMM,       denotes 

the action space which comprises   candidate destination 

MEC nodes for SC at time . The agent selects and performs 

action ∈  on the environment, resulting in 

migration of SC  to another MEC node. This changes 

environment to its subsequent state, ′ .
Reward: The agent receives an immediate reward signal 

from the environment as evaluation of executed action, 

 , and new state, ′ . The immediate reward received 

in time slot  is expressed as:

    
               (8)

where   quantifies benefits experienced by   due to 

migration of SC  to selected MEC node. The term   

represents costs in terms of migration time and bandwidth 

consumption as defined by (5). The agent receives a penalty, 


  , if the selected destination MEC node rejects 

deployment of SC  due to resource constraints. Therefore, 

the objective for the migration decision problem becomes 

maximization of the expected discounted accumulative 

rewards over all time steps, defined as

    
  

 

                 (9) 

where the discount factor       determines the 

decreasing importance of immediate rewards over future 

ones. Thus, the agent aims at learning the optimal policy 

which maximizes the accumulative reward by selecting 

actions that return the highest reward at every time step .

This study employs the classic Q-learning [16] algorithm 

to learn the optimal policy for maximizing (8). The algorithm 

defines a Q-value function,   , for evaluating 

the quality of action   under policy when performed in 

state . At time , the Q-learning agent approximates and 

stores a Q-value in the Q-table. The obtained value 

corresponds to the long-term expected discounted reward 

under a specific  . The Q-value function can be defined as:

 
        ′  ′  (10)

where the second term is the Q-value function in the next state 

′ . Using the Bellman equation, an agent iteratively 

updates Q-values until converging to the optimal Q-values, 

denoted 
 . The agent focuses on learning the 

optimal policy that achieves highest accumulative discounted 

reward. 

Q-learning does not always find the optimal policy when 

solving complex real-world RL problems comprising large 

state action spaces. Furthermore, it fails to utilize learned 

knowledge when make decisions in newly encountered states. 

To overcome the limitations, this study exploits Deep 

Q-Learning [17] which uses deep neural networks to 

approximate the Q-value function for finding the optimal 

policy. Known as a Deep Q-Network, the neural network in 

Deep Q-Learning is represented as   , 

where   is model parameters/weights for approximating the 

optimal value function. Thus, DQN agent focuses on finding 

  that minimizes the Mean-Squared Error (MSE) loss 

function, given as:




  
  

          (11)  

in which     ′  ′ 
 

represents the target Q-value function;   are the parameters 

of the Q-network during iteration  while 
 are the weights 

for computing the target Q-values, which are only updated at 

fixed intervals. The loss function,   , is differentiated 

with respect to the weights  , obtaining a gradient vector. 

Consequently, the loss function is optimized using Stochastic 

Gradient Descent, resulting in updated network weights 

during iteration .

Figure 2 illustrates service mobility management 

DQN-SEMM procedure, with respect to vehicle,  . Initially, 
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(Figure 2) Service mobility management using 

DQN-SEMM

the vehicle is within the service area of , thus it is 

determined as initial host of service instance for  . Mobility 

of vehicle   to another location triggers the proposed 

DQN-SEMM to obtain the current state,  from MEC 

environment. DQN-SEMM passes the observed state  to 

the neural network to approximate Q-values for all actions 

. It selects an action with the highest Q-value to perform 

on environment , corresponding to the decision that  

should either be migrated to an optimal or remain on current 

host. In return, the agent receives a reward from the 

environment following the executed action and resulting state 

transition . 

Initially, the agent does not have adequate knowledge 

about behavior of its environment and actions/decisions. As 

such, the learning process starts with using the -greedy 

policy to select actions. The -greedy policy selects an 

action with probability   and performs on the environment. 

This phase enables the agent to explore available 

environment states and actions for improved 

decision-making. At time , the agent stores explored states, 

actions, next states and rewards in a Replay Memory dataset, 

     as experience sample tuple, 

     ′ . An exploration decay rate 

parameter controls the transition into exploitation phase 

where the agent uses saved experience samples for training 

the DQN.

The exploitation phase involves the agent utilizing stored 

experiences samples to train the DQN model for improving 

its decision-making effectiveness. Once  contains 

sufficiently enough  samples for training, the agent 

uniformly draws sample mini-batches, denoted

   ′  ∼ at random from the 

dataset . The states  and ′  are input to the 

Policy and target networks, respectively for forward 

propagation to approximate corresponding Q-values. Using 

Q-value outputs from the policy and target networks , 

DQN computes MSE using (10) to evaluate learning progress 

and optimal Q-value function approximation capability. After 

computing MSE, the agent updates weight parameters of the 

policy network using stochastic gradient descent . After 

C-training episodes, weight parameters   of the Policy 

network are cloned to update the weights in the Target 

network, which are held fixed for C-steps . All the while, 

the agent replaces old experience samples in the Replay 

Memory with newly obtained samples until the model 

converges to optimality. 

4. Performance Evaluation

This section presents performance evaluation results of the 

proposed DQN-SEMM strategy. The evaluation is based on 

data obtained through simulation experiments. DQN-SEMM 

performance is compared with DQN-based Location-aware 

(DQN-LOC) migration strategy [6]. Unlike DQN-SEMM, 

decision criteria in DQN-LOC includes only distance, 

ignoring crucial time-variant factors like resource availability. 

This renders the strategy vulnerable to increased service time 
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Parameter Value

No. of servers,  18

No. of AVs,  20 ~ 120

Container size, 
 0.5 GB

Task input data size,  2 ~ 5 MB

Task length,  50 ~ 100 MI

Task execution delay,  0.35 s

Rejection penalty, 
   0.5

Computing capacity,   700 MIPS

No. of Res. blocks,  50

Res. block bandwidth,  180 kHz

Vehicle transmission power,  200 mW

Noise spectral density,  - 174dBm/Hz

Path loss exponent,  3.75

Power control factor,  0.25

Wired link bandwidth,  1 Gbps

Training episodes 500

Replay Memory size 10000

Exploration rate 0.05

Minibatch size 16

Discount factor,  0.99

Learning rate 0.001

(Table 1) Simulation Parameters

especially during peak hours when more users offload tasks 

to MEC hosts. Most importantly, it does not address optimal 

MEC node selection as the SC is always migrated to the 

serving MEC node. Performance metrics for comparison 

include service delay, task processing delay, and migration 

rejection rate. 

We implemented a simulation environment using Python. 

It consists of 36 cells, with each having a BS that serves 

AVs within the cell [6]. Although deploying a Mobile Edge 

Computing (MEC) server with each Base Station (BS) 

simplifies the simulation, it is not feasible in practice because 

it results in significant capital and operational expenses for 

the mobile operator. Thus, we deployed 18 Servers across the 

network to provide cloud computing resources to vehicles. 

The computation capacity of each MEC server is  

   MIPS while the number of vehicles is varied 

from 20 to 120. Each vehicle generates tasks according to 

Poisson process with    . Table 1 provides a 

summary of parameters used during simulation experiments.

 Figure 3 shows performance of DQN-SEMM and 

DNQ-LOC on average service delay for varying number of 

vehicles. As observed, average service delay is directly 

proportional to the number of vehicles exploiting MEC 

resources. DQN-SEMM shows outstanding performance over 

DQN-LOC as it reduces the average service delay by up to 

8%, on average. This is due to its ability to strategically 

deploy migrated SCs on MEC hosts that are both in 

proximity to the vehicle and equipped with adequate 

computing resources to expeditiously process offloaded 

tasks. Notably, the proposed approach achieves a 15.57% 

and 10.36% service delay reduction comparing to DQN-LOC 

when there are 20 and 120 vehicles exploiting MEC 

resources, respectively.

(Figure 3) Impact of varying number of 

vehicles on average service delay.

As depicted in Figure 4, DQN-SEMM reduces processing 

delays for tasks on MEC hosts by 26.04% compared to 

DQN-LOC when 120 vehicles share MEC resources. Overall, 

DQN-SEMM achieves an average reduction of 36% in task 

computing time compared to DQN-LOC. This is because 

DQN-SEMM consistently transfers services to MEC hosts 

with sufficient resources, leading to faster processing of 

offload tasks. In contrast, DQN-LOC assumes that the host 

associated with serving BS has adequate resources, causing 

services to migrate to the ideal MEC server in terms of 

location but not computing resources. Therefore, 
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(Figure 5) Impact of varying number of vehicles 

on average migration rejection rate.

(Figure 4) Impact of varying number of vehicles 

on average task processing time.

DQN-SEMM enables operators to reduce service delays with 

fewer servers, leading to lower capital and operational costs.

Service migration may fail if MEC hosts lack sufficient 

resources, leading to the system either searching for an 

alternative host or abandoning migration. The migration 

rejection rate impacts the failure rate of migration decisions, 

resulting in a longer migration wait time and reduced QoE 

for vehicles. Figure 5 shows that DQN-SEMM significantly 

outperforms DQN-LOC in terms of reducing migration 

rejection rates. On average, DQN-SEMM reduces rejection 

rates by over 90%, with a 54.96% reduction when the MEC 

system is congested with requests from 120 vehicles. This is 

because DQN-SEMM considers resource availability and 

imposes penalties on the agent for rejected migrations.

5. Conclusion

In this paper, dynamic service mobility is discussed, 

aiming to maintain service continuity and satisfy URLLC 

service requirements. Due to its recent advances and 

performance, Deep Reinforcement Learning is exploited to 

implement solution for autonomous efficient MEC service 

mobility management. Efficacy of the proposed approach is 

confirmed through simulation experiments and results reveal 

outstanding performance when benchmarked against the 

target scheme. As future work, we intend to expand our 

scheme by employing multi-agent deep reinforcement 

learning.
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