• Title/Summary/Keyword: Mo-Cu-N

Search Result 109, Processing Time 0.03 seconds

Effect of Copper Content on the Microstructural Properties of Mo-Cu-N Films (Copper 함량에 따른 Mo-Cu-N 박막의 미세구조 변화에 대한 연구)

  • Shin, Jung-Ho;Choi, Kwang-Soo;Wang, Qi-Min;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.266-271
    • /
    • 2010
  • Ternary Mo-Cu-N films were deposited on Si wafer substrates with various copper contents by magnetron sputtering method using Mo target and Cu target in $Ar/N_2$ gaseous atmosphere. As increasing $N_2$ pressure, the microstructure of Mo-N films changed from ${\gamma}-Mo_2N$ of (111) having face-centered-cubic (FCC) structure to $\delta$-MoN of (200) having hexagonal structure. Detailed the microstructures of the Mo-Cu-N coatings were studied by X-ray diffraction, scanning electron microscopy and field emission transmission electron microscope. The results indicated that the incorporation of copper into the growing Mo-N coating led to the $Mo_2N$ and MoN crystallites were more well-distributed and refined and the copper existed in grain boundary. Ternary Mo-Cu-N films had a composite microstructure of the nanosized crystal crystalline ${\gamma}-Mo_2N$ and $\delta$-MoN surrounded by amorphous $Cu_3N$ phase.

MoN-Cu Thin Films Deposited by Magnetron Sputtering with Single Alloying Target (단일 합금타겟을 이용한 마크네트론 스퍼터링 공정으로 증착된 MoN-Cu 박막)

  • Lee, Han-Chan;Moon, Kyoung-Il;Shin, Paik-Kyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.368-375
    • /
    • 2016
  • MoN-Cu thin films were prepared to achieve appropriate properties of high hardness and low friction coefficient, which could be applied to automobile engine parts for reducing energy consumption as well as solving wear problems. Composite thin films of MoN-Cu have been deposited by various processes using multiple targets such as Mo and Cu. However, those deposition with multiple targets revealed demerits such as difficulties in exact control of composition and homogeneous deposition. This study is aiming for suggesting an appropriate process to solve those problems. A single alloying target of Mo-Cu (10 at%) was prepared by powder metallurgy methods of mechanical alloying (MA) and spar plasma sintering (SPS). Thin film of MoN-Cu was then deposited by magnetron sputtering using the single alloying target of Mo-Cu (10 at%). Properties of the resulting MoN-Cu thin film were examined and compared to those of MoN-Cu thin films prepared with double targets of Mo and Cu.

Effects of Cu Addition on Microstructural and Mechanical Properties of Mo-Cu-N Coatings (Cu 첨가가 Mo-Cu-N 코팅의 미세구조와 기계적 특성에 미치는 영향)

  • Kim, Soobyn;Yoon, Hae-Won;Lee, Han-Chan;Moon, KyoungIl;Hong, Hyun Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.227-232
    • /
    • 2019
  • Mo-N based coatings have been studied for enhancing mechanical characteristics of thin films. In the case of Mo-X-N coatings, the microstructure and mechanical properties can be affected by the addition of the third element. In this work, Mo-Cu-N coatings were successfully fabricated with varying the Cu content from 4.5 at% to 31 at% by the co-sputtering method. Thus, properties of the coatings were analyzed by EDS, SEM, XRD, AFM, nano indentation and scratch test techniques. From observed results, MoxN bonds were made in a nitrogen atmosphere and Cu elements were present at grain boundaries. In addition, coatings with the Cu content above 14 at% had a Cu3N peak in the XRD results. Thus, it is suggested that the formation of Cu3N phase affected the microstructure and mechanical properties of Mo-Cu-N coatings. Mechanical properties of Mo-Cu-N coatings were found to be relatively better at Cu content of about 12 at%.

Cu 함량 변화에 따른 Mo-N-Cu 박막의 특성 및 내마모 특성 평가

  • Choe, Min-Gi;Jo, Seong-U;Gwon, Jeong-Dae;Kim, Jong-Guk;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.227-227
    • /
    • 2010
  • 동력 전달을 위한 구동 부품에 대한 내마모성 개선을 통한 에너지 효율 및 부품의 수명 향상에 대한 사회적 관심이 급증하고 있다. 특히, 최근에는 자동차용 구동부품에 저마찰 내마모 특성이 우수한 Mo-N-Cu 나노복합체 박막에 대한 연구가 활발하게 진행되고 있다. 본 연구에서는 Mo-N-Cu 나노복합체 박막을 마그네트론 스퍼터링 증착법을 활용하였고, 이때 Mo 및 Cu 타겟을 적용하여 동시에 증착하였다. 진공 챔버의 진공도는 $5{\times}10^{-6}\;Torr$ 이하의 초기 진공도를 확보한 이후, 알곤 및 질소 가스를 주입하여 공정 압력이 5 mTorr 수준이 되도록 하였다. 이때 N2/(Ar+N2) = 0.5를 유지하였다. Mo-N-Cu 박막내에 Cu 함량 변화를 위해 Mo 캐소드는 D.C. 1 kW로 고정하고 Cu 캐소드에 R.F. 파워를 0, 40, 60, 80 W로 변화하였다. 박막의 두께는 증착시간을 변화하면서 $1\;{\mu}m$ 이상이 되도록 하였다. Cu 캐소드에 인가된 파워의 변화에 따라 Mo-N-Cu 박막내 Cu 함유량은 10 at.%까지 변화되는 것을 EDX 분석을 통해 확인하였다. 또한 증착된 Mo-N-Cu 박막의 표면 및 단면에 대한 FE-SEM 분석을 통하여 전형적인 주상구조를 지닌 MoN 박막에서 Cu 함량이 증가할수록 Mo-N-Cu 박막의 결정성을 방해하는 것을 확인하였다. 또한 XRD 분석을 통하여 박막의 결정 구조 분석을 하였고, Nano Indentor를 통하여 30 GPa 수준의 고경도를 지닌 박막이 형성됨을 확인하였다. 박막의 내마모 특성 평가를 위해 ball-on-disk 트라이보미터를 활용하여 마찰계수 평가를 수행하였고, Cu 함유량의 변화에 따라 마찰계수가 MoN 박막의 경우 0.8에서 Cu 함량이 5 at.%에서 0.15로 급격하게 낮아짐을 확인하였다.

  • PDF

Mechanical Properties of MoN-Cu Coatings according to Pre-treatment of AISI H13 Tool Steel (H13 공구강의 전처리에 따른 Mo-Cu-N 코팅의 기계적 특성)

  • Park, Hyun-Jun;Moon, Kyoung-Il;Kim, Sang-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.6
    • /
    • pp.343-350
    • /
    • 2020
  • The degradation of mechanical properties of nitride coatings to steel substrates is one of the main challenges for industrial applications. In this study, plasma nitriding treatment was used in order to increase the mechanical properties of Mo-Cu-N coating to the H13 tool steel. The nanostructured Mo-Cu-N coating was deposited using pulsed DC magnetron sputtering method with a single alloy Mo-Cu target. Mechanical properties of MoN-Cu coated samples after nitriding were found to be relatively better than non-nitrided MoN-Cu coating.

Diffusion barrier properties of Mo compound thin films (Mo-화합물의 확산방지막으로서의 성질에 관한 연구)

  • 김지형;이용혁;권용성;염근영;송종한
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.143-150
    • /
    • 1997
  • In this study, doffusion barrier properties of 1000 $\AA$ thick molybdenum compound(Mo, Mo-N, $MoSi_2$, Mo-Si-N) films were investigated using sheet resistance measurement, X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), Scanning electron mircoscopy(SEM), and Rutherford back-scattering spectrometry(RBS). Each barrier material was deposited by the dc magnetron sputtering and annealed at 300-$800^{\circ}C$ for 30 min in vacuum. Mo and MoSi2 barrier were faied at low temperatures due to Cu diffusion through grain boundaries and defects in Mo thin film and the reaction of Cu with Si within $MoSi_2$, respectively. A failure temperature could be raised to $650^{\circ}C$-30 min in the Mo barrier system and to $700^{\circ}C$-30 min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the $N_2$, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It is found that Mo-Si-N is the more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetraion preventing Cu reaction with the substrate for $30^{\circ}C$min at a temperature higher than $650^{\circ}C$.

  • PDF

A study on the effect of Cu amount thin films prepared by magnetron sputtering with Mo-Cu single alloying target (Mo-Cu 단일 합금타겟을 이용하여 마그네트론 스퍼터링법으로 제작한 박막의 Cu 함량에 따른 연구)

  • Lee, Han-Chan;Sin, Baek-Gyun;Mun, Gyeong-Il
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.73-74
    • /
    • 2015
  • 본 연구에서는 상호간의 고용도가 없는 Mo, Cu 재료의 합금화가 용이하도록 기계적 합금화법(Mechanical Alloying)을 이용하여 Mo-Cu 합금분말을 제조하였고, 준안정상태의 구조의 유지가 가능한 방전 플라즈마 소결법(Spark Plasma Sintering)을 이용하여 합금타겟을 제작하였다. Mo-Cu 박막을 제작하기 위해서 합금타겟을 이용하였고 스퍼터링 공정을 진행하여 박막을 제작하였다. 그 결과 Mo-10wt%Cu 단일타겟을 이용하여 제작한 박막의 경우 Ar : N 분위기에서 27.7GPa 로 가장 높은 경도값을 가지는 것을 확인하였다. 또한 Mo-5wt%Cu 단일타겟을 이용하여 Ar : N 분위기에서 제작한 박막은 건식조건에서의 마찰계수값이 0.69 로 가장 낮은 것을 확인할 수 있었으며 윤활조건(GF4)에서는 Mo-10wt%Cu 단일타겟을 이용하여 Ar : N 분위기에서 제작한 박막이 0.56 으로 가장 낮았다.

  • PDF

Study of anti wear resistance of Mo-Cu-N coatings deposited by reactive magnetron sputtering process with single alloying target (윤활조건에 따른 Mo-Cu-N 코팅의 마모특성에 관한 연구)

  • Mun, Gyeong-Il;Park, Hyeon-Jun;Lee, Han-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.95.1-95.1
    • /
    • 2017
  • In this study, it has been tried to make the single Mo-Cu alloying targets with the Cu showing the best surface hardness that was determined by investigation on the coatings with the double target process. The single alloying targets were prepared by powder metallurgy methods such as mechanical alloying and spark plasma sintering. The nanocomposite coatings were prepared by reactive magnetron sputtering process with the single alloying targets in $Ar+N_2$ atmosphere. The microstructure changes of the Mo-Cu-N coatings with diverse Cu contents were investigated by using XRD, SEM and EDS. The mechanical properties of the coatings were evaluated by using nano-indentor, scratch test, and ball on disc methods. Especially, the coated samples were tested by using various lubricating oil to compare the property of anti wear-resistance. In this study, the nano-composite MoN-Cu coatings prepared using an alloying target was eventually compared with the coatings from the multiple targets.

  • PDF

A Study on the Interfacial Bonding between AlN Ceramics and Metals: II. Effect of Mo Interlayer on the Residual Stress of AlN/Cu Joint (AlN 세라믹스와 금속간 계면접합에 관한 연구: II. AlN/Cu 접합체의 잔류응력에 미치는 Mo 중간재의 영향)

  • Park, Sung-Gye;Kim, Ji-Soon;You, Hee;Yum, Young-Jin;Kwon, Young-Soon
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.970-977
    • /
    • 1999
  • Effect of Mo interlayer on the relaxation of residual stress in AlN/Cu pint bonded by active-metal brazing method was investigated. The stress analyses by finite-element-method, the measurement of pint strength and the observation of fracture surface were carried out and their results were compared with each other. From the results of stress analysis it is confirmed that a Mo interlayer led to a shift of maximum stress concentration site from AlN/insert-metal interface$\rightarro$ insert-metal/Mo$\rightarro$Mo interlayer. Additionally, with increase of the Mo interlayer thickness the stress concentration with tensile component was separately built both at the interface of Cu/Mo and AlN/Mo. whereby the residual stress in the free surface of AlN close to the bonded interface was drastically reduced. The AlN/Mo/Cu pints with Mo interlayer thickness of above 400$\mu\textrm{m}$ showed the strengths higher than 200 MPa. upto max. 275 MPa, while the AlN/Cu pint only max. 52 MPa.

  • PDF

MO-COMPOUNDS AS A DIFFUSION BARRIER BETWEEN Cu AND Si

  • Kim, Ji-Hyung;Lee, Yong-Hyuk;Kwon, Yong-Sung;Yeom, Geun-Young;Song, Jong-Han
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.683-690
    • /
    • 1996
  • In this study, the diffusion barrier properties of $1000 \AA$ thick molybdenum compounds (Mo, Mo-N, $MoSi_2$, Mo-Si-N) were investigated using sheet resistance measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and Rutherford backscattering spectrometry (RBS). Each barrier material was deposited by the dc magnetron sputtering, and annealed at 300-$800^{\circ}C$ for 30min in vacuum. Mo and $MoSi_2$ barrier were failed at low temperature due to Cu diffusion through grain bound-aries and defects of Mo thin film and the reaction of Cu with Si within $MoSi_2$ respectively. A failure temperature could be raised to $650^{\circ}C$-30min in the Mo barrier system and to $700^{\circ}C$-30min in the Mo-silicide system by replacing Mo and $MoSi_2$ with Mo-N and Mo-Si-N, respectively. The crystallization temperature in the Mo-silicide film was raised by the addition of $N_2$. It is considered that not only the N, stuffing effect but also the variation of crystallization temperature affects the reaction of Cu with Si within Mo-silicide. It was found that Mo-Si-N is more effective barrier than Mo, $MoSi_2$, or Mo-N to copper penetration preventing Cu reaction with the substrate for 30min at a temperature higher than $650^{\circ}C$.

  • PDF