• Title/Summary/Keyword: Mo electrode

Search Result 236, Processing Time 0.025 seconds

Fabrication of Sm0.5Sr0.5CoO3 cathode films for intermediate temperature SOFCs by electrostatic spray deposition (정전분무증착법에 의한 중온형 고체산화물 연료전지를 위한 Sm0.5Sr0.5CoO3 양극막의 제조)

  • Park, In-Yu;Im, Jong-Mo;Jung, Yeong-Geul;Shin, Dong-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.69-73
    • /
    • 2010
  • The microstructural change of the $Sm_{0.5}Sr_{0.5}CoO_3$ (SSC) electrode for a cathode material of solid oxdie fuel cells (SOFCs) deposited by the electrostatic spray deposition (ESD) technique was characterized. Samarium chloride hexahydrate $(SmCl_3{\cdot}6H_2O)$, strontium chloride hexahydrate $(SrCl_2{\cdot}gH_2O)$, cobalt nitrate hexahydrate $(Co(No_3)_2{\cdot}6H_2O)$ as starting materials and methyl alcohol as solvent were used to make precursor solution. The suitable porous SSC films for a cathode of SOFCs were deposited on Si substrate and it is observed that the microstructure was strongly dependent on processing parameters such as deposition time, substrate temperature, and applied voltage. Scanning Electron Microscope (SEM) and X-ray Diffractometer (XRD) measurement were used to investigate the microstructure and crystallinity of the SSC films. The ESD technique is shown to be an efficient method in which the SOFCs' cathode film can be fabricated with the desired phases and microstructure.

A Study on Applicability of Electrical Resistivity Survey in Mechanized Tunnelling Job-sites (TBM 현장에서 전기비저항 탐사의 적용성에 관한 연구)

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jiho;Lee, In-Mo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.35-45
    • /
    • 2018
  • It is essential to predict ground conditions ahead of the tunnel face during tunnel excavation. Various studies on tunnel prediction method of the ground condition ahead of the tunnel face have already been done and applied to in mechanized tunnelling job sites. So, all the methods used in mechanized tunnelling to predict ground conditions ahead of the tunnel face were reviewed. A questionnaire surveying Tunnel Boring Machine (TBM) operators with at least 10 years' experience in TBM operation was used to determine the requirements for prediction methods as well as the distance from the tunnel face that must be assessed. Based on the result of questionnaire survey, the most feasible prediction methods applicable to mechanized tunnelling job-sites are suggested. One of the prediction methods applicable to mechanized tunnelling job-sites might be the electrical resistivity survey by utilizing the disk cutter on the cutterhead as electrode. So, in this study, laboratory tests were performed to evaluate the feasibility of prediction method utilizing electrical resistivity survey at mechanized tunnelling job-sites. It was found that geological condition ahead of 0.3 times of TBM's diameter from tunnel face could be predicted.

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Characteristics of Pr1-xMxMnO3(M=Ca, Sr) as a Cathode Material of Solid Oxide Fuel Cell (고체전해질형 연료전지용 Pr1-xMxMnO3(M-Ca, Sr) 산소극 재료의 특성)

  • Rim, Hyung-Ryul;Jeong, Soon-Ki;Lee, Ju-Seong
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1125-1131
    • /
    • 1996
  • Ca or Sr-doped $PrMnO_3$ were prepared for cathode material of solid oxide fuel cell. The characteristics such as the electrical conductivity and the cathodic overpotential were investigated as to doping contents. Also the reactivity with yttria stabilized zirconia of electrolyte, and the thermal expansion coefficient were studied. The prepared perovskite powder had the mean particle size of $2{\sim}5{\mu}m$, and the particle size and the surface area was out of relation to the doping content. When Ca doping amount of electrode material was 30mol%, the electrical conductivity was the highest value of $266S{\cdot}cm^{-1}$ at $1000^{\circ}C$, and also the polarization characteristics showed the best property. The reactivity between YSZ and Ca-doped $PrMnO_3$ at $1200^{\circ}C$ for 100hours was lower than that between YSZ and Sr-doped $PrMnO_3$. The thermal expansion coefficient of $Pr_{0.7}Ca_{0.3}MnO_3$ was $1.19{\times}10^{-5}K^{-1}$ in the temperature range of $300{\sim}1000^{\circ}C$, and this value was similar to that of YSZ, $1.15{\times}10^{-5}K^{-1}$.

  • PDF

Synthesis of Binuclear Bismacrocyclic Iron(II) Complex by the Aerobic Oxidation of Iron(II) Complex of 1,4,8,11-Tetraazacyclotetradecane

  • Myunghyun Paik Suh;Gee-Yeon Kong;Il-Soon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.439-444
    • /
    • 1993
  • The aerobic oxidation of the Fe(II) complex of 1,4,8,11-tetraazacyclotetradecane, [Fe(cyclam)$(CH_3CN)_2](ClO_4)_2$, in MeCN in the presence of a few drops of $HClO_4$ leads to low spin Fe(III) species [Fe(cyclam)$(CH_3CN)_2](ClO_4)_3$. The Fe(III) cyclam complex is further oxidized in the air in the presence of a trace of water to produce the deep green binuclear bismacrocyclic Fe(II) complex $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$. The Fe(II) ions of the complex are six-coordinated and the bismacrocyclic ligand is extensively unsaturated. $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$ crystallizes in the monoclinic space group $P2_1/n$ with a= 13.099 (1) ${\AA}$, b= 10.930 (1) ${\AA}$, c= 17.859 (1) ${\AA}$, ${\beta}$= 95.315 $(7)^{\circ}$, and Z= 2. The structure was solved by heavy atom methods and refined anisotropically to R values of R= 0.0633 and $R_w$= 0.0702 for 1819 observed reflections with F > $4{\sigma}$ (F) measured with Mo K${\alpha}$ radiation on a CAD-4 diffractometer. The two macrocyclic units are coupled through the bridgehead carbons of ${\beta}$-diimitie moieties by a double bond. The double bonds in each macrocycle unit are localized. The average bond distances of $Fe(II)-N_{imine}$, $Fe(II)-N_{amine}$, and $Fe(II)-N_{MeCN}$ are 1.890 (5), 2.001 (5), and 1.925 (6) ${\AA}$, respectively. The complex is diamagnetic, containing two low spin Fe(II) ions in the molecule. The complex shows extremely intense charge transfer band in the near infrared at 868 nm with ${\varepsilon}$= 25,000 $M^{-1}cm^{-1}$. The complex shows a one-electron oxidation wave at +0.83 volts and two one-electron reduction waves at -0.43 and-0.72 volts vs. Ag/AgCl reference electrode. The complex reacts with carbon monoxide in $MeNO_2$ to form carbonyl adducts, whose $v_{CO}$ value (2010 $cm^{-1}$) indicates the ${\pi}$-accepting property of the present bismacrocyclic ligand.

Multi-Layered Sintered Porous Transport Layers in Alkaline Water Electrolysis (다층 소결메쉬 확산체를 이용한 알칼라인 수전해 셀)

  • YEOM, SANG HO;YUN, YOUNG HWA;CHOI, SEUNGWOOK;KWON, JIHEE;LEE, SECHAN;LEE, JAE HUN;LEE, CHANGSOO;KIM, MINJOONG;KIM, SANG-KYUNG;UM, SUKKEE;KIM, CHANG-HEE;CHO, WON CHUL;CHO, HYUN-SEOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.442-454
    • /
    • 2021
  • The porous transport layer (PTL) is essential to effectively remove oxygen and hydrogen gas from the electrode surface at high current density operation conditions. In this study, the effect of PTL with different characteristics such as pore size, pore gradient, interfacial coating was investigated by multi-layered sintered mesh. A water electrolysis single cell of active area of the 34.56 cm2 was constructed, and IV performance and impedance analysis were conducted in the range of 0 to 2.0 A/cm2. It was confirmed that the multi-layered sintered mesh PTL, which have an average pore size of 25 to 57 ㎛ and a larger pore gradient, removed bubbles effectively and thus seemed to improve IV performance. Also, it was confirmed that the catalytic metals such as Ni, NiMo coating on the PTL reduced activation overpotential, but increased mass transport overpotential.