• Title/Summary/Keyword: Mo/Si

Search Result 929, Processing Time 0.032 seconds

Joule-heating Induced Crystallization (JIC) of Amorphous Silicon Films

  • Ko, Da-Yeong;Ro, Jae-Sang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.101-104
    • /
    • 2018
  • An electric field was applied to a Mo conductive layer in the sandwiched structure of $glass/SiO_2/Mo/SiO_2/a-Si$ to induce Joule heating in order to generate the intense heat needed to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced via Joule heating through a solid state transformation. Blanket crystallization was accomplished within the range of millisecond, thus demonstrating the possibility of a new crystallization route for amorphous silicon films. The grain size of JIC poly-Si can be varied from few tens of nanometers to the one having the larger grain size exceeding that of excimer laser crystallized (ELC) poly-Si according to transmission electron microscopy. We report here the blanket crystallization of amorphous silicon films using the $2^{nd}$ generation glass substrate.

Fabrication of resistive switching memory by using MoS2 layers grown by chemical vapor deposition

  • Park, Sung Jae;Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.298.1-298.1
    • /
    • 2016
  • Two-dimensional materials have been received significant interest after the discovery of graphene due to their fascinating electronic and optical properties for the application of novel devices. However, graphene lack of certain bandgap which is essential requirement to achieve high performance field-effect transistors. Analogous to graphene materials, molybdenum disulfide ($MoS_2$) as one of transition-metal dichalcogenides family presents considerable bandgap and exhibits promising physical, chemical, optical and mechanical properties. Here we studied nonvolatile memory based on $MoS_2$ which is grown by chemical vapor deposition (CVD) method. $MoS_2$ growth was taken on $1.5{\times}1.5cm^2$ $SiO_2$/Si-substrate. The samples were analyzed by Raman spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Current-voltage (I-V) characteristic was carried out HP4156A. The CVD-$MoS_2$ was analyzed as few layers and 2H-$MoS_2$ structure. From I-V measurement for two metal contacts on CVD-$MoS_2$ sample, we found typical resistive switching memory effect. The device structures and the origin of nonvolatile memory effect will be discussed.

  • PDF

The Electric Properties And Fabrication of High Temperature Heating Elements of $MoSi_2$ (이규화몰리브덴 고온발열체의 전기적 특성 및 제조에 관한 연구)

  • 이후인;심건주;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.605-608
    • /
    • 2001
  • Molybdenum disilicide is widely used for manufacturing high-temperature heating elements owing to its low electrical resistivity, good thermal conductivity, and ability to withstand oxidation at high temperatures. MoSi$_2$heating elements with 4-5wt% of montmorillonite type bentonite as plasticzer and a small amount of Si$_3$N$_4$, ThO$_2$, and B as additives was manufactured. Extruded rods of 3.7mmø and 6.7mmø diameter and 400mm long were fabricated using a vacuum extruder, which were then sinrered for 4-5 hrs. at the max. temperrature of 140$0^{\circ}C$. After 10 minute's oxidation treatment, the diameter of the rod is reduced. The heating elements thus prepared was stable at 1$700^{\circ}C$ and the physical properties such as specific electrical resistivity, hardness, apparent densisty, thermal expansion coefficient, and bending strength were almost identical with thoes of commercial heating elements. In this study we have tried to gain the practical knowledge of manufacturing MoSi$_2$heating elements so that it may be utilized later in a research of pilot scale and eventually be transferred to industry.

  • PDF

Interfacing Silicate Layer Between MoO3 Ribbon and Pt Metaldots Boosts Methanol Oxidation Reaction

  • Lee, Dohun;Jeong, Juwon;Manivannan, Shanmugam;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.273-281
    • /
    • 2020
  • Constructing and making highly active and stable nanostructured Pt-based catalysts with ultralow Pt loading are still electrifying for electrochemical applications such as water electrolysis and fuel cells. In this study, MoO3 ribbons (RBs) of few micrometer in length is successfully synthesized via hydrothermal synthesis. Subsequently, 3-dimentional (3D)-silicate layer for about 10 to 15 nm is introduced via chemical deposition onto the pre-formed MoO3 RBs; to setup the platform for Pt metaldots (MDs) deposition. In comparison with the bare MoO3 RBs, the MoO3-Si has served as a efficient solid-support for stabilizing and accommodating the uniform deposition of sub-2 nm Pt MDs. Such a structural design would effectively assist in improving the electronic conductivity of a fabricated MoO3-Si-Pt catalyst towards MOR; the interfaced, porous and 3D silicate layer has assisted in an efficient mass transport and quenching the poisonous COads species leading to a significant electrocatalytic performance for MOR in alkaline medium. Uniformly decorated, sub-2 nm sized Pt MDs has synergistically oxidized the MeOH in association with the MoO3-Si solid-support hence, synergistic catalytic activity has been achieved. Present facile approach can be extended for fabricating variety of highly efficient Metal Oxide-Metal Nanocomposite for energy harvesting applications.

Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Characterization of U-7Mo/Al-5Si Dispersion Fuels

  • Lee, Jeongmook;Park, Jai Il;Youn, Young-Sang;Ha, Yeong-Keong;Kim, Jong-Yun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.645-650
    • /
    • 2017
  • This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U-7Mo/Ale5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured $^{98}Mo/^{238}U$ ratios in fuel particles from spot analysis, and 3.4% RSD for $^{98}Mo/^{238}U$ ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U-7Mo fuel particles from the Al-5Si matrix. Each mass spectrum peak indicates the presence of U-7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for $^{98}Mo$ by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U-Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.

Structure and Physical Properties of Fe/Si Multiayered Films with Very Thin Sublayers

  • Baek, J.Y;Y.V.Kudryavtsev;J.Y.Rhee;Kim, K.W.;Y.P.Le
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.173-173
    • /
    • 2000
  • Multilayered films (MLF) consisting of transition metals and semiconductors have drawn a great deal of interest because of their unique properties and potential technological applications. Fe/Si MLF are a particular topic of research due to their interesting antiferromagnetic coupling behavior. although a number of experimental works have been done to understand the mechanism of the interlayer coupling in this system, the results are controversial and it is not yet well understood how the formation of an iron silicide in the spacer layers affects the coupling. The interpretation of the coupling data had been hampered by the lack of knowledge about the intermixed iron silicide layer which has been variously hypothesized to be a metallic compound in the B2 structure or a semiconductor in the more complex B20 structure. It is well known that both magneto-optical (MO0 and optical properties of a metal depend strongly on their electronic structure that is also correlated with the atomic and chemical ordering. In order to understand the structure and physical properties of the interfacial regions, Fe/Si multilayers with very thin sublayers were investigated by the MO and optical spectroscopies. The Fe/si MLF were prepared by rf-sputtering onto glass substrates at room temperature with a totall thickness of about 100nm. The thicknesses of Fe and Si sublayers were varied from 0.3 to 0.8 nm. In order to understand the fully intermixed state, the MLF were also annealed at various temperatures. The structure and magnetic properties of Fe/Si MLF were investigated by x-ray diffraction and vibrating sample magnertometer, respectively. The MO and optical properties were measured at toom temperature in the 1.0-4.7 eV energy range. The results were analyzed in connection with the MO and optical properties of bulk and thin-film silicides with various structures and stoichiometries.

  • PDF

Structural Characterization of Mo-Si Multilayer Mirror for Extreme Ultraviolet Lithography (극자외선 노광공정용 Mo/Si 다층 박막 미러의 구조 분석)

  • 허성민;김형준;이승윤;윤종승;강인용;정용재;안진호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.213-216
    • /
    • 2001
  • 극자외선영역의 빛에대한 Mo/Si 반사형 다층 박막 미러를 스퍼터링 시스템으로 증착하여, 특성을 평가한 결과 3mTorr의 낮은 공정 압력에서 최적의 구조인자를 가진 다층 박막을 증착할 수 있었다. TEM, low angle XRD peak, 반사도 그래프로부터 다층 박막의 구조인자를 분석하였으며, 특히 low angle XRD peak로부터 다층박막의 d-spacing, 층간 두께 uniformity에 대한 정보 및 광학적 정보를 간접적으로 분석할 수 있었다. 최대 반사도는 12.7nm 파장에서 약 53%였으며, low angle XRD에서 추출한 d-spacing 값이 TEM 이미지에서 측정한 값보다 더 정확한 값을 얻을 수 있었다.

  • PDF

The Etching Characteristics of $MoSi_2$ film by ECR Etch (ECR Etch 에 의한 $MoSi_2$ 막의 식각 특성)

  • Lee, H.S.;Kang, H.B.;Park, G.S.;Lee, C.J.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.809-812
    • /
    • 1992
  • Charateristics of the ECR etch were Investigated about $MoSi_2$ layer which is widely used for the capping layer and barrier layer in VLSI metallization. The etch rate was evaluated according to gas ratio of $SF_6/BCl_3$, $N_2$ flow rate, RF power and chamber pressure. The chamber pressure, the most important factor, represented the maximum etch rate at about the pressure of 10 mTorr.

  • PDF

Effect of Mechanical Alloying on Combustion Densification of MoSi$_2$

  • Park, Hyung-Sang;Park, Jin-Seong;Ka, Mi-da;Shin, Kwang-Seon;Kim, Yong-Seong
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.312-318
    • /
    • 1998
  • The effect of the mechanical alloying of elemental Mo and Si powders on the combustion densification behavior of MoSi$_2$ was investigated. The ignition temperature of the combustion reaction of the mechanically alloyed powder was measured to be significantly lower than that of the powder mixture prepared by the low energy ball milling process. The densification of the products after the combustion reaction under compressive pressure from the mechanically alloyed powders, however, was found to be poorer than that of the products from the ball milled powder.

  • PDF