Browse > Article
http://dx.doi.org/10.1016/j.net.2016.08.014

Application of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Characterization of U-7Mo/Al-5Si Dispersion Fuels  

Lee, Jeongmook (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Park, Jai Il (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Youn, Young-Sang (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Ha, Yeong-Keong (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Kim, Jong-Yun (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.49, no.3, 2017 , pp. 645-650 More about this Journal
Abstract
This technical note demonstrates the feasibility of using laser ablation inductively coupled plasma mass spectrometry for the characterization of U-7Mo/Ale5Si dispersion fuel. Our measurements show 5.0% Relative Standard Deviation (RSD) for the reproducibility of measured $^{98}Mo/^{238}U$ ratios in fuel particles from spot analysis, and 3.4% RSD for $^{98}Mo/^{238}U$ ratios in a NIST-SRM 612 glass standard. Line scanning allows for the distinction of U-7Mo fuel particles from the Al-5Si matrix. Each mass spectrum peak indicates the presence of U-7Mo fuel particles, and the time width of each peak corresponds to the size of that fuel particle. The size of the fuel particles is estimated from the time width of the mass spectrum peak for $^{98}Mo$ by considering the scan rate used during the line scan. This preliminary application clearly demonstrates that laser ablation inductively coupled plasma mass spectrometry can directly identify isotope ratios and sizes of the fuel particles in U-Mo/Al dispersion fuel. Once optimized further, this instrument will be a powerful tool for investigating irradiated dispersion fuels in terms of fission product distributions in fuel matrices, and the changes in fuel particle size or shape after irradiation.
Keywords
Dispersion Fuel; Inductively Coupled Plasma Mass Spectrometry; Laser Ablation; Uranium-Molybdenum Alloy;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 S.H. Lee, J.M. Park, C.K. Kim, Thermophysical properties of U-Mo/Al alloy dispersion fuel meats, Int. J. Thermophys. 28 (2007) 1578-1594.   DOI
2 H.J. Ryu, Y.S. Kim, J.M. Park, H.T. Chae, C.K. Kim, Performance evaluation of U-Mo/Al dispersion fuel by considering a fuel-matrix interaction, Nucl. Eng. Technol. 40 (2008) 409-418.   DOI
3 Y.S. Kim, G.L. Hofman, Irradiation behavior of the interaction product of U-Mo fuel particle dispersion in an Al matrix, J. Nucl. Mater. 425 (2012) 181-187.   DOI
4 Y.S. Kim, B.J. Cho, D.S. Sohn, J.M. Park, Thermal conductivity modeling of U-Mo/Al dispersion fuel, J. Nucl. Mater. 466 (2015) 576-582.   DOI
5 J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Development of very-high-density low-enriched-uranium fuels, Nucl. Eng. Des. 178 (1997) 119-126.   DOI
6 G.L. Hofman, Y.S. Kim, A classification of uniquely different types of nuclear fission gas behavior, Nucl. Eng. Technol. 37 (2005) 299-308.
7 C.K. Kim, J.M. Park, H.J. Ryu, Use of a centrifugal atomization process in the development of research reactor fuel, Nucl. Eng. Technol. 39 (2007) 617-626.   DOI
8 C.K. Kim, K.H. Kim, I.H. Kuk, S.J.L. Kang, Preparation and characterization of uranium silicide dispersion nuclear fuel by centrifugal atomization, J. Korean Powder Metall. Inst. 1 (1994) 72-78.
9 H.J. Ryu, Y.S. Kim, Influence of fuelematrix interaction on the breakaway swelling of U-Mo dispersion fuel in Al, Nucl. Eng. Technol. 46 (2014) 159-168.   DOI
10 J.M. Park, K.H. Kim, C.K. Kim, M.K. Meyer, G.L. Hofman, R.V. Strain, The irradiation behavior of atomized U-Mo alloy fuels at high temperature, Met. Mater. Int. 7 (2001) 151-157.   DOI
11 A.B. Robinson, G.S. Chang, D.D. Keiser Jr., D.M. Wachs, D.L. Porter, Irradiation Performance of U-Mo Alloy Based "Monolithic" Plate-Type Fuel-Design Selection, Idaho National Laboratory, 2009. INL/EXT-09-16807.
12 S.F. Durrant, Laser ablation inductively coupled plasma mass spectrometry: achievements, problems, prospects, J. Anal. At. Spectrom. 14 (1999) 1385-1403.   DOI
13 G.J. Havrilla, J. Gonzalez, Demonstration of Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Uranium Isotopic Measurements in U-10Mo Nuclear Fuel Foils, Los Alamos National Laboratory, 2015. LA-UR-15-24319.
14 D. Gunther, B. Hattendorf, Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry, TrAC Trends Anal. Chem. 24 (2005) 255-265.   DOI
15 J.S. Becker, Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS for isotope analysis of long-lived radionuclides, Int. J. Mass Spectrom. 242 (2005) 183-195.   DOI
16 M. Guillong, P. Heimgartner, Z. Kopajtic, D. Gunther, I. Gunther-Leopold, A laser ablation system for the analysis of radioactive samples using inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 22 (2007) 399-402.   DOI
17 D.S. Bexter, I. Rodushkin, E. Engstrom, Isotope abundance ratio measurements by inductively coupled plasma-sector field mass spectrometry, J. Anal. At. Spectrom. 27 (2012) 1355-1381.   DOI
18 Y.K. Ha, S.H. Han, H.G. Kim, W.H. Kim, K.W. Jee, Shielded laser ablation ICP-MS system for the characterization of high burnup fuel, Nucl. Eng. Technol. 40 (2008) 311-318.   DOI
19 Y.K. Ha, J. Kim, Y.S. Jeon, S.H. Han, H.S. Seo, K. Song, Local burnup characteristics of PWR spent nuclear fuels discharged from YEONGGWANG-2 nuclear power plant, Nucl. Eng. Technol. 42 (2010) 79-88.   DOI
20 Y.K. Ha, J.G. Kim, Y.S. Park, S.D. Park, K. Song, Behaviors of molybdenum in $UO_2$ fuel matrix, Nucl. Eng. Technol. 43 (2011) 309-316.   DOI
21 R. Russo, Laser ablation in analytical chemistry-a review, Talanta 57 (2002) 425-451.   DOI