Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00822

Interfacing Silicate Layer Between MoO3 Ribbon and Pt Metaldots Boosts Methanol Oxidation Reaction  

Lee, Dohun (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Jeong, Juwon (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Manivannan, Shanmugam (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Kim, Kyuwon (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.3, 2020 , pp. 273-281 More about this Journal
Abstract
Constructing and making highly active and stable nanostructured Pt-based catalysts with ultralow Pt loading are still electrifying for electrochemical applications such as water electrolysis and fuel cells. In this study, MoO3 ribbons (RBs) of few micrometer in length is successfully synthesized via hydrothermal synthesis. Subsequently, 3-dimentional (3D)-silicate layer for about 10 to 15 nm is introduced via chemical deposition onto the pre-formed MoO3 RBs; to setup the platform for Pt metaldots (MDs) deposition. In comparison with the bare MoO3 RBs, the MoO3-Si has served as a efficient solid-support for stabilizing and accommodating the uniform deposition of sub-2 nm Pt MDs. Such a structural design would effectively assist in improving the electronic conductivity of a fabricated MoO3-Si-Pt catalyst towards MOR; the interfaced, porous and 3D silicate layer has assisted in an efficient mass transport and quenching the poisonous COads species leading to a significant electrocatalytic performance for MOR in alkaline medium. Uniformly decorated, sub-2 nm sized Pt MDs has synergistically oxidized the MeOH in association with the MoO3-Si solid-support hence, synergistic catalytic activity has been achieved. Present facile approach can be extended for fabricating variety of highly efficient Metal Oxide-Metal Nanocomposite for energy harvesting applications.
Keywords
Electrocatalysis; $MoO_3$ Ribbon; Methanol Oxidation; Silicates Fucntionalization; Platinum;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Z. P. Wu, X. F. Lu, S. Q. Zang, X. W. Lou, Adv. Funct. Mater, 2020.
2 J. Dreon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, M. Boccard, Nano Energy, 2020, 70, 104495.   DOI
3 J. Li, S. Hou, T. Liu, L. Wang, C. Mei, Y. Guo, L. Zhao, Chem. Eur. J, 2020, 26(9), 2013-2024.   DOI
4 S. Liu, C. Xu, H. Yang, G. Qian, S. Hua, J. Liu, X. Zheng, X. Lu, Small, 2020, 16 (6).
5 S. Mohebbi, M. Rostamizadeh, D. Kahforoushan, Fuel, 2020, 266, 117063.   DOI
6 Z. Yu, H. Jiang, D. Gu, J. Li, L. Wang, L. Shen, J. Electrochem. Sci. Technol, 2016, 7 (2), 170-178.   DOI
7 R. Jiao, W. Zhang, H. Sun, Z. Zhu, Z. Yang, W. Liang, A. Li, Mater. Today Energy, 2020, 16, 100382.   DOI
8 I. Martinaiou, A. H. A. Monteverde Videla, N. Weidler, M. Kübler, W. D. Z. Wallace, S. Paul, S. Wagner, A. Shahraei, R. W. Stark, S. Specchia, U. I. Kramm, Appl. Catal. B, 2020, 262, 118217.   DOI
9 Y. Ouyang, H. Cao, H. Wu, D. Wu, F. Wang, X. Fan, W. Yuan, M. He, L. Y. Zhang, C. M. Li, Appl. Catal. B, 2020, 265, 118606.   DOI
10 Y. Hao, X. Wang, Y. Zheng, J. Shen, J. Yuan, A. J. Wang, L. Niu, S. Huang, Electrochim. Acta, 2016, 198, 127-134.   DOI
11 S. Jayaraman, T. F. Jaramillo, S.-H. Baeck, E. W. McFarland, J. Phys. Chem. B, 2005, 109(48), 22958-22966.   DOI
12 X. L. Sui, Z. B. Wang, C. Z. Li, J. J. Zhang, L. Zhao, D. M. Gu, J. Power Sources, 2014, 272, 196-202.   DOI
13 H. L. Pang, X. H. Zhang, X. X. Zhong, B. Liu, X. G. Wei, Y. F. Kuang, J. H. Chen, J. Colloid Interface Sci., 2008, 319(1), 193-198.   DOI
14 H.-J. Chun, D. B. Kim, D.-H. Lim, W.-D. Lee, H.-I. Lee, Int. J. Hydrogen Energy, 2010, 35(12), 6399-6408.   DOI
15 M. A. Ghanem, A. M. Al-Mayouf, M. N. Shaddad, M. S. Alhoshan, M. N. Al-Shalawi, Int. J. Electrochem. Sci., 2015, 10, 3680-3692.
16 C. Zhou, H. Wang, F. Peng, J. Liang, H. Yu, J. Yang, Langmuir, 2009, 25(13), 7711-7717.   DOI
17 J. J. Zhang, X. L. Sui, L. Zhao, L. M. Zhang, D. M. Gu, Z. B. Wang, Int. J. Hydrogen Energy, 2017, 42(4), 2045-2053.   DOI
18 P. Justin, G. Ranga Rao, Int. J. Hydrogen Energy, 2011, 36(10), 5875-5884.   DOI
19 C. Z. Li, Z. B. Wang, X. L. Sui, L. M. Zhang, D. M. Gu, S. Gu, J. Mater. Chem. A, 2014, 2(47), 20139-20146.   DOI
20 L. Zhao, Z. B. Wang, J. L. Li, J. J. Zhang, X. L. Sui, L. M. Zhang, Electrochim. Acta, 2016, 189, 175-183.   DOI
21 Q. Wang, Q. Wang, D. A. Zhang, J. Sun, L. L. Xing, X. Y. Xue, Chem. Asian J., 2014, 9(11), 3299-3306.   DOI
22 G. R. Patzke, A. Michailovski, F. Krumeich, R. Nesper, J.-D. Grunwaldt, A. Baiker, Chem. Mater., 2004, 16(6), 1126-1134.   DOI
23 X. W. Lou, H. C. Zeng, Chem. Mater, 2002, 14(11), 4781-4789.   DOI
24 S. Manivannan, J. Jeong, D. K. Kang, K. Kim, Electroanalysis, 2018, 30(1), 57-66.   DOI
25 S. Manivannan, B. Krishnakumari, R. Ramaraj, Chem. Eng. J, 2012, 204-205, 16-22.   DOI
26 P. Rameshkumar, S. Manivannan, R. Ramaraj, J. Nanopart. Res, 2013, 15(5), 1639.   DOI
27 S. Manivannan, R. Ramaraj, Chem. Eng. J, 2012, 210, 195-202.   DOI
28 S. Manivannan, R. Ramaraj, J. Nanopart. Res, 2012, 14(6), 961.   DOI
29 S. Manivannan, R. Ramaraj, Analyst, 2013, 138(6), 1733-1739.   DOI
30 I. Kang, W. S. Shin, S. Manivannan, Y. Seo, K. Kim, J. Electrochem. Sci. Technol.,2016, 7(4), 277-285.   DOI
31 Y. Seo, S. Manivannan, I. Kang, W. S. Shin, K. Kim, J. Electrochem. Sci. Technol, 2017, 8(1), 25-34.   DOI
32 S. Manivannan, I. Kang, K. Kim, Langmuir, 2016, 32(7), 1890-1898.   DOI
33 S. Manivannan, I. Kang, Y. Seo, H. E. Jin, S. W. Lee, K. Kim, ACS Appl. Mater. Interfaces, 2017, 9(38), 32965-32976.   DOI
34 S. Manivannan, Y. Seo, K. Kim, J. Electrochem. Sci. Technol, 2019, 10(3), 284-293.   DOI