• Title/Summary/Keyword: MnO2음극

Search Result 21, Processing Time 0.018 seconds

Electrochemical Characteristics of Transition Metal Pyrophosphate as Negative Electrode Materials through Solid-state Reaction (고상법으로 합성된 리튬이온 이차전지용 음극물질로서 전이금속 피로인산화물의 전기화학적 특성)

  • Hong, Min Young;An, Sang-Jo;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.105-112
    • /
    • 2020
  • Transition metal oxide, which undergoes a conversion reaction in the negative electrode material for a lithium-ion batteries, has a high specific capacity, but still has several critical problems. In this study, manganese pyrophosphate (Mn2P2O7), nickel pyrophosphate (Ni2P2O7), and carbon composite materials with pyrophosphates as novel negative electrode materials instead of transition metal oxide, are synthesized through simple solid-state reaction. The initial reversible capacity of Mn2P2O7 and Ni2P2O7 are 333 and 340 mAh g-1, and when the composite materials are composed with carbon, the reversible capacity increases to 433 and 387 mAh g-1, respectively. The initial Coulombic efficiency is also improved by about 10%. The Mn2P2O7 and carbon composite material has the highest initial capacity and efficiency, and has the best cycle performance. Mn2P2O7 containing polyanion, has a lower specific capacity due to the large mass of polyanion compared to MnO (manganese oxide). However, since Mn2P2O7 shows a voltage curve with a slope, the charging (lithiation) voltage increases from 0.51 to 0.57 V (vs. Li/Li+), and the discharge (delithiation) voltage decreases from 1.15 to 1.01 V (vs. Li/Li+). Therefore, the voltage efficiency of the cell is improved because the voltage difference between charging and discharging is greatly reduced from 0.64 to 0.44 V, and the operating voltage of the full cell increases because the negative electrode potential is lowered during the discharging process.

Effects of Lithium Bis(Oxalate) Borate as an Electrolyte Additive on High-Temperature Performance of Li(Ni1/3Co1/3Mn1/3)O2/Graphite Cells (LiBOB 전해액 첨가제 도입에 따른 Li(Ni1/3Co1/3Mn1/3)O2/graphite 전지의 고온특성)

  • Jeong, Jiseon;Lee, Hyewon;Lee, Hoogil;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.58-67
    • /
    • 2015
  • The effects of electrolyte additives, lithium bis(oxalate)borate (LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 2-(triphenylphosphoranylidene) succinic anhydride (TPSA), on high-temperature storage properties of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite are investigated with coin-type full cells. The 1 wt.% LiBOB-containing electrolyte showed the highest capacity retention after high temperature ($60^{\circ}C$) storage for 20 days, 86.7%, which is about 5% higher than the reference electrolyte, 1.15M lithium hexafluorophosphate ($LiPF_6$) in ethylene carbonate/ethyl methyl carbonate (EC/EMC, 3/7 by volume). This enhancement is closely related to the formation of semi-carbonate compounds originated from $BOB^-$ anions, thereby resulting in lower SEI thickness and interfacial resistance after storage. In addition, the 1 wt.% LiBOB-containing electrolyte also exhibited better cycle performance at 25 and $60^{\circ}C$ than the reference electrolyte, which indicates that LiBOB is an effective additive for high-temperature performance of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite chemistry.

Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite (Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • The MCMB-$Li_4Ti_5O_{12}$ with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-$Li_4Ti_5O_{12}$ as the negative electrode and $LiMn_2O_4$, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.

A study on the synthesis and improvement of electrochemical properties of olivine-type phosphate cathode materials for lithium rechargeable batteries by mechanical alloying (기계적 합금화법에 의한 리튬 이차전지용 phosphate계 양극물질의 제조 및 전기화학적 특성 향상에 관한 연구)

  • 김철우;권상준;정운태;이경섭
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.216-216
    • /
    • 2003
  • 현재 상용화되어 있는 리튬 이차전지용 양극재료로는 비교적 작동전압이 높은 층상 암염구조(LiCoO$_2$, LiNiO$_2$) 및 Spinet계(LiMn$_2$O$_4$) 전이금속 산화물이 대부분 이용되고 있다 하지만 LiCoO$_2$나 LiNiO$_2$ 같은 상용화 물질은 비교적 높은 비용과, 강한 독성 때문에 많은 문제점을 가지고 있다. 또 Spinel(LiMn$_2$O$_4$)는 낮은 비용과 환경친화적인 장점에도 불구하고 Jahn-Teller 변형과 관련된 구조적 변형이 심각하기 때문에 사이클시 비가역적인 용량의 감소가 심각하다. 이러한 관점에서 전이금속보다 그 양이 풍부하고 저렴할 뿐만 아니라 독성이 없는 Olivine 구조 (LiFePO$_4$)를 갖는 phosphate계 화합물에 관심을 가지게 되었다. LiFePO$_4$는 리튬 음극과 3.4V의 방전전압을 나타내며, 170mAh/g의 이론용량을 가지고 있어, Fe-base의 장점은 물론 안정적인 결정구조 및 현재 상용화된 재료들과 비슷한 에너지 밀도를 가진다. 따라서 본 연구에서는 양극물질의 기존 두 제조법인 고상반응법과 sol-gel법으로 대표되는 제조법의 단점을 상호 보완될 수 있다고 판단되는 기계적 합금화법(Mechanical Alloying, MA)공정을 도입하여 초미세립 분말 제조에 초점을 맞추어 Olivine phosphate계 양극물질의 제조 및 전기화학적 특성을 연구하였다.

  • PDF

Electrochemical Behaviors of Graphite/LiNi0.6Co0.2Mn0.2O2 Cells during Overdischarge (흑연과 LiNi0.6Co0.2Mn0.2O2로 구성된 완전지의 과방전 중 전기화학적 거동분석)

  • Bong Jin Kim;Geonwoo Yoon;Inje Song;Ji Heon Ryu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.1
    • /
    • pp.11-18
    • /
    • 2023
  • As the use of lithium-ion secondary batteries is rapidly increasing due to the rapid growth of the electric vehicle market, the disposal and recycling of spent batteries after use has been raised as a serious problem. Since stored energy must be removed in order to recycle the spent batteries, an effective discharging process is required. In this study, graphite and NCM622 were used as active materials to manufacture coin-type half cells and full cells, and the electrochemical behavior occurring during overdischarge was analyzed. When the positive and negative electrodes are overdischarged respectively using a half-cell, a conversion reaction in which transition metal oxide is reduced to metal occurs first in the positive electrode, and a side reaction in which Cu, the current collector, is corroded following decomposition of the SEI film occurs in the negative electrode. In addition, a side reaction during overdischarge is difficult to occur because a large polarization at the initial stage is required. When the full cell is overdischarged, the cell reaches 0 V and the overdischarge ends with almost no side reaction due to this large polarization. However, if the full cell whose capacity is degraded due to the cycle is overdischarged, corrosion of the Cu current collector occurs in the negative electrode. Therefore, cycled cell requires an appropriate treatment process because its electrochemical behavior during overdischarge is different from that of a fresh cell.

Cell Properties for SOFC Using Synthesized Powder of Electrolyte LSGM System and Cathode LSM System (LSGM 전해질과 LSM 양극의 합성분말을 이용한 SOFC 단위전지의 특성)

  • Lee, Mi-Jai;Nam, Jeong-Hee;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.359-366
    • /
    • 2002
  • The purpose of this study is to investigate the properties of LSGM electrolyte and LSM cathode. The unit cell based on the optimum conditions and processing for high performance was fabricated and measured. The single phase of $LaGaO_3$ was obtained on sintering at $1500^{\circ}$ for 6h with composition of $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}와 (La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ and $(La_{0.85}Sr_{0.15})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$. The grain size of the sintered body was about $10∼30{\mu}m$ and electrical conductivity was 0.13 S/cm measured at $800^{\circ}$. The single phase of $LaMnO_3$ structure in $(La1-xSrx)MnO_3$ system was obtained at x=0∼0.2 and the particle size of the synthesized powder was about 40 nm. The unit cell was prepared by firing at $1200^{\circ}$ for 1h with $(La_{0.9}Sr_{0.1})MnO_3$ cathode and 0.9NiO-0.1YSZ anode screen-printed on surfaces of $(La_{0.8}Sr_{0.2})(Ga_{0.8}Mg_{0.2})O_{3-\delta}$ electrolyte. The grain size of the electrode was close to $1{\mu}m$ and the electrode had porous structure. The maximum power density of unit cell showed $0.3W/cm^2$ at $800^{\circ}$.

Development and Application of Electrode for a New Secondary Aqueous Cell (새로운 수용성 2차 전지용 전극의 개발과 응용)

  • Hwang, Kum-Sho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.2
    • /
    • pp.165-170
    • /
    • 2005
  • Al-Zn alloy/$MnO_2$, seawater cell was considered as a primary aqueous cell with an average voltage range from 1.0 to 1.1V, and the electrolyte of seawater was uptaken into the cell. Eventually, the capacity of its usage will be used for long-term. However, the more use of this cell, the higher corrosion phenomenon of the electrode occurred. Due to its corrosion phenomenon, one main default has been observed with gradual decrease during a discharge process. In this research, a common-used active material for anode was $LiNiO_2$. An active material for cathode, $Zn_{X}FeS_2$ was synthesized in high temperature by uptaken a small amount of 1.3 wt% of ZnS into $FeS_2$, one of the transition-metal dichalcogenides in high temperature. Consequently, based on their usages shown above, this secondary aqueous lithium cell could be more developed. This cell was shown as remarkable charge/discharge performance during the charge/discharge processes. This cathode with active material was given a considerable efficiency of inserting $Li^+$ ions. Moreever, in accordance with the characteristic of the crystal structure for $Zn_{x}FeS_2$, a small amount of ZnS was added which made it possible to reduce prominently velocity of corrosion during the charge/discharge cycle. By applying those merits, Al-Zn alloy/$MnO_2$ seawater cell will be used as a fundamental data in order to transform into a secondary aqueous cell.

The Physical Properties of Mn-Ferrite According to the Variation of Fe-Mn Composition Ratio (철-망간 화합비 변화에 따르는 망간 페라이트의 물성)

  • Kim, Yu-Sang;Hwang, Yong-Gil
    • Korean Journal of Materials Research
    • /
    • v.2 no.2
    • /
    • pp.126-132
    • /
    • 1992
  • Experiment has been performed to investigate the thermal and magnetic properties of Mn-ferrite by electrolysis. Using the 0.2%C mild steel as soluble anode and SUS 304 stainless steel as cathode, Mn-ferrite could be made from the sulfuric acid leaching of the wasted manganese dry cell and $MnSO_4$reagent by electrolysis. As the result of X-ray diffraction, thermal analysis and magnetic measurement, Mn-ferrite was the spinel type in $Mn_{x}Fe_{3-x}O_4$ (X=1), the weight loss rate of $Mn_{x}Fe_{3-x}O_4$ were linearly increased up to the $200^{\circ}C$. Ms, Mr and Hc values were decreased with increasing Mn content and heating temperature. When Mn-ferrite was formed by $MnCl_2$reagent electrolysis, Ms values were higher than those formed from the sulfuric acid leaching of the wasted manganese dry cell and $MnSO_4$reagent by electrolysis. In Mn-ferrite, which was formed from the sulfuric acid leaching of the wasted manganese dry cell by electrolysis, Ms and Mr values were higher, Hc values were lower than which was formed by $MnSO_4$ reagent electrolysis at $200^{\circ}C\;and\;300^{\circ}C, while the same values at $100^{\circ}C$. The shape of particles was spherical type, the sizes of them were about $0.1{\mu}m$ sub-micron in $MnSO_4$reagent electrolysis, $0.5{\mu}m$ in the sulfuric acid leaching of the wasted manganese dry cell by electrolysis.

  • PDF

Study on LiFePO4 Composite Cathode Materials to Enhance Thermal Stability of Hybrid Capacitor (하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구)

  • Kwon, Tae-Soon;Park, Ji-Hyun;Kang, Seok-Won;Jeong, Rag-Gyo;Han, Sang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.242-246
    • /
    • 2017
  • The application of composite cathode materials including $LiFePO_4$ (lithium iron phosphate) of olivine crystal structure, which has high thermal stability, were investigated as alternatives for hybrid battery-capacitors with a $LiMn_2O_4$ (spinel crystal structure) cathode, which exhibits decreased performance at high temperatures due to Mn-dissolution. However, these composite cathode materials have been shown to have a reduction in capacity by conducting life cycle experiments in which a $LiFePO_4$/activated carbon cell was charged and discharged between 1.0 V and 2.3 V at two temperatures, $25^{\circ}C$ and $60^{\circ}C$, which caused a degradation of the anode due to the lowered voltage in the anode. To avoid the degradation of the anode, composite cathodes of $LiFePO_4/LiMn_2O_4$ (50:50 wt%), $LiFePO_4$/activated carbon (50:50 wt%) and $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ (50:50 wt%) were prepared and the life cycle experiments were conducted on these cells. The composite cathode including $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ of layered crystal structure showed stable voltage behavior. The discharge capacity retention ratio of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was about twice as high as that of a $LiFePO_4/LiMn_2O_4$ cell at thermal stability experiment for a duration of 1,000 hours charged at 2.3 V and a temperature of $80^{\circ}C$.