Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.2.58

Effects of Lithium Bis(Oxalate) Borate as an Electrolyte Additive on High-Temperature Performance of Li(Ni1/3Co1/3Mn1/3)O2/Graphite Cells  

Jeong, Jiseon (Dept. of Chemical and Biological Eng., Hanbat National University)
Lee, Hyewon (Dept. of Chemical and Biological Eng., Hanbat National University)
Lee, Hoogil (Dept. of Chemical and Biological Eng., Hanbat National University)
Ryou, Myung-Hyun (Dept. of Chemical and Biological Eng., Hanbat National University)
Lee, Yong Min (Dept. of Chemical and Biological Eng., Hanbat National University)
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.2, 2015 , pp. 58-67 More about this Journal
Abstract
The effects of electrolyte additives, lithium bis(oxalate)borate (LiBOB), fluoroethylene carbonate (FEC), vinylene carbonate (VC), 2-(triphenylphosphoranylidene) succinic anhydride (TPSA), on high-temperature storage properties of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite are investigated with coin-type full cells. The 1 wt.% LiBOB-containing electrolyte showed the highest capacity retention after high temperature ($60^{\circ}C$) storage for 20 days, 86.7%, which is about 5% higher than the reference electrolyte, 1.15M lithium hexafluorophosphate ($LiPF_6$) in ethylene carbonate/ethyl methyl carbonate (EC/EMC, 3/7 by volume). This enhancement is closely related to the formation of semi-carbonate compounds originated from $BOB^-$ anions, thereby resulting in lower SEI thickness and interfacial resistance after storage. In addition, the 1 wt.% LiBOB-containing electrolyte also exhibited better cycle performance at 25 and $60^{\circ}C$ than the reference electrolyte, which indicates that LiBOB is an effective additive for high-temperature performance of $Li(Ni_{1/3}Co_{1/3}Mn_{1/3})O_2$/graphite chemistry.
Keywords
electrolyte additive; high temperature storage; lithium bis(oxalate) borate; solid electrolyte; interphase;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Armand and J.-M. Tarascon, 'Building better batteries' Nature, 451, 652 (2008).   DOI
2 B. Scrosati, J. Hassoun, and Y.-K. Sun, 'Lithium-ion batteries. A look into the future' Energy Environ. Sci., 4, 3287 (2011).   DOI   ScienceOn
3 C. Liu, F. Li, L. P. Ma, and H. M. Cheng, 'Advanced materials for energy storage' Adv. Mater., 22, E28 (2010)   DOI
4 F. Conte, 'Battery and battery management for hybrid electric vehicles: a review' Elektrotechnik & Informationstechnik, 123, 424 (2006).   DOI
5 C. Chan, 'The state of the art of electric, hybrid, and fuel cell vehicles' Proc. IEEE, 95, 704 (2007).   DOI
6 E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, 'Energy storage devices for future hybrid electric vehicles' J. Power Sources, 168, 2 (2007).   DOI
7 S. Santee, A. Xiao, L. Yang, J. Gnanaraj, and B. L. Lucht, 'Effect of combinations of additives on the performance of lithium ion batteries' J. Power Sources, 194, 1053 (2009).   DOI
8 D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, and U. Heider, 'On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries' Electrochim. Acta, 47, 1423 (2002).   DOI
9 T. Sasaki, T. Abe, Y. Iriyama, M. Inaba, and Z. Ogumi, 'Suppression of an alkyl dicarbonate formation in Li-ion cells' J. Electrochem. Soc., 152, A2046 (2005).   DOI
10 L. Zhao, S. Okada, and J.-I. Yamaki, 'Effect of VC additive on MFA-based electrolyte in Li-ion batteries' J. Power Sources, 244, 369 (2013).   DOI
11 M. Lu, H. Cheng, and Y. Yang, 'A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells' Electrochim. Acta, 53, 3539 (2008).   DOI
12 M. Xu, W. Li, X. Zuo, J. Liu, and X. Xu, 'Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive' J. Power Sources, 174, 705 (2007).   DOI
13 J. Li, W. Yao, Y. S. Meng, and Y. Yang, 'Effects of vinyl ethylene carbonate additive on elevated-temperature performance of cathode material in lithium ion batteries' J. Phys. Chem. C, 112, 12550 (2008).
14 L. Larush-Asraf, M. Biton, H. Teller, E. Zinigrad and D. Aurbach, 'On the electrochemical and thermal behavior of lithium bis (oxalato) borate (LiBOB) solutions' J. Power Sources, 174, 400 (2007).   DOI
15 M.-H. Ryou, G.-B. Han, Y. M. Lee, J.-N. Lee, D. J. Lee, Y. O. Yoon, and J.-K. Park, 'Effect of fluoroethylene carbonate on high temperature capacity retention of $LiMn_2O_4/graphite$ Li-ion cells' Electrochim. Acta, 55, 2073 (2010).   DOI   ScienceOn
16 M.-H. Ryou, J.-N. Lee, D. J. Lee, W.-K. Kim, J. W. Choi, J.-K. Park, and Y. M. Lee, '2-(triphenylphosphoranylidene) succinic anhydride as a new electrolyte additive to improve high temperature cycle performance of $LiMn_2O_4/graphite$ Li-ion batteries' Electrochim. Acta, 102, 97 (2013).   DOI
17 N. N. Sinha, J. Burns, and J. Dahn, 'Storage studies on Li/graphite cells and the impact of So-called SEI-forming electrolyte additives' J. Electrochem. Soc., 160, A709 (2013).   DOI
18 W. Lu, Z. Chen, H. Joachin, J. Prakash, J. Liu, and K. Amine, 'Thermal and electrochemical characterization of $MCMB/LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ using LiBOB as an electrolyte additive' J. power sources, 163, 1074 (2007).   DOI   ScienceOn
19 H. Ota, K. Shima, M. Ue, and J.-I. Yamaki, 'Effect of vinylene carbonate as additive to electrolyte for lithium metal anode' Electrochim. Acta, 49, 565 (2004).   DOI
20 A. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J. Tarascon, and A. Shukla, 'Solution-combustion synthesized nanocrystalline $Li_4Ti_5O_{12}$ as high-rate performance Li-ion battery anode' Chem. Mater., 22, 2857 (2010).   DOI   ScienceOn
21 T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, and S. M. Oh, 'Failure mechanisms of $LiNi_{0.5}Mn_{1.5}O_4$ electrode at elevated temperature' J. Power Sources, 215, 312 (2012).   DOI
22 J.-H. Kim, S. C. Woo, M.-S. Park, K. J. Kim, T. Yim, J.-S. Kim, and Y.-J. Kim, 'Capacity fading mechanism of $LiFePO_4$-based lithium secondary batteries for stationary energy storage' J. Power Sources, 229, 190 (2013).   DOI
23 T. Eriksson, A. M. Andersson, A. G. Bishop, C. Gejke, T. Gustafsson, and J. O. Thomas, 'Surface analysis of $LiMn_2O_4$ electrodes in carbonate-based electrolytes' J. Electrochemical Society, 149, A69 (2002).   DOI
24 R. Yazami and Y. F. Reynier, 'Mechanism of self-discharge in graphite-lithium anode' Electrochim. Acta, 47, 1217 (2002).   DOI
25 K. Colbow, J. Dahn, and R. Haering, 'Structure and electrochemistry of the spinel oxides $LiTi_2O_4$ and $Li_{4/3}Ti_{5/3}O_4$' J. Power Sources, 26, 397 (1989).   DOI   ScienceOn
26 E. Ferg, R. Gummow, A. De Kock, and M. Thackeray, 'Spinel anodes for lithium-ion batteries' J. Electrochem. Soc., 141, L147 (1994).   DOI
27 K. Zaghib, M. Armand, and M. Gauthier, 'Electrochemistry of anodes in solid-state Li-ion polymer batteries' J. Electrochem. Soc., 145, 3135 (1998).   DOI
28 K. Abe, T. Hattori, K. Kawabe, Y. Ushigoe, and H. Yoshitake, 'Functional electrolytes triple-bonded compound as an additive for negative electrode' J. Electrochem. Soc., 154, A810 (2007).   DOI
29 A. Andersson, A. Henningson, H. Siegbahn, U. Jansson, and K. Edstrom, 'Electrochemically lithiated graphite characterised by photoelectron spectroscopy' J. power sources, 119, 522 (2003).
30 K. Xu, U. Lee, S. Zhang, M. Wood, and T. R. Jow, 'Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes' Electrochem. solidstate lett., 6, A144 (2003).   DOI
31 Z. Chen, W. Lu, J. Liu, and K. Amine, '$LiPF_6/LiBOB$ blend salt electrolyte for high-power lithium-ion batteries' Electrochim. Acta, 51, 3322 (2006).   DOI
32 D. Aurbach, B. Markovsky, A. Shechter, Y. Ein-Eli and H. Cohen, 'A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures' J. Electrochem. Society, 143, 3809 (1996).   DOI
33 M. H. Ryou, D. J. Lee, J. N. Lee, Y. M. Lee, J. K. Park, and J. W. Choi, 'Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators' Adv. Energy Mater., 2, 645 (2012).   DOI   ScienceOn
34 R. Dedryvere, S. Laruelle, S. Grugeon, L. Gireaud, J.-M. Tarascon, and D. Gonbeau, 'XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode' J. Electrochem. Soc., 152, A689 (2005).   DOI
35 Y. K. Kwon, W. Choi, H.-S. Choi, and J. K. Lee, 'Effect of lithium difluoro (oxalato) borate on $LiMn_2O_4$-activated carbon hybrid capacitors' Electron. Mater. Lett., 9, 751 (2013).   DOI
36 M. H. Ryou, Y. M. Lee, J. K. Park, and J. W. Choi, 'Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries' Adv. Mater., 23, 3066 (2011).   DOI