• 제목/요약/키워드: Mn-Zn

검색결과 2,144건 처리시간 0.027초

White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn

  • Lee, Jae Woog;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.189-196
    • /
    • 2014
  • Water dispersible ZnS based nanocrystals: ZnS (blue), ZnS:Cu (green) and ZnS:Mn (yellow-orange) were synthesized by capping the surface of the nanocrystals with a mercaptopropionic acid (MPA) molecule. The MPA capped ZnS based nanocrystal powders were characterized by using XRD, HR-TEM, EDXS, FT-IR, and FT-Raman spectroscopy. The optical properties of the colloidal nanocrystals were also measured by UV/Vis and photoluminescence (PL) spectroscopies in aqueous solvents. The PL spectra showed broad emission peaks at 440 nm (ZnS), 510 nm (ZnS:Cu) and 600 nm (ZnS:Mn), with relative PL efficiencies in the range of 4.38% to 7.20% compared to a reference organic dye. The measured average particle sizes from the HR-TEM images were in the range of 4.5 to 5.0 nm. White light emission was obtained by mixing these three nanocrystals at a molar ratio of 20 (ZnS):1 (ZnS:Cu):2 (ZnS:Mn) in water. The measured color coordinate of the white light was (0.31, 0.34) in the CIE chromaticity diagram, and the color temperature was 5527 K.

Mg-Zn-Mn-(Ca)합금의 크리이프 소성변형 및 파단거동에 관한 연구 (A Study on the Plastic Deformation and Fracture Behavior of Mg-Zn-Mn-(Ca) Alloys)

  • 강대민;박수찬;강경일
    • 동력기계공학회지
    • /
    • 제10권3호
    • /
    • pp.45-50
    • /
    • 2006
  • In this paper, creep tests of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloy casted by mold under the temperature range of 473.00-573.00K, and the stress range of 23.42-87.00Mpa were done with the equipment of automatic controlled temperature and computer for data acquisition. The activation energies were obtained by relationship between creep rate and temperature, and the stress exponents were obtained by relationship between creep rate and stress. From the experiment results, the activation energies of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloy were 149.87kJ/mol, 147.97kJ/mol, respectively, and the stress exponents of those alloy were 5.13, 5.59, respectively, under the temperature of 473.00-493.00K and the stress range of 62.43-78.00Mpa. And the activation energies of those alloy were 134.41kJ/mol, 129.22kJ/mol, respectively, and the stress exponent of those alloy were 3.48, 3.77, respectively, under the temperature of 553-573Mpa and the stress range of 23.42-39.00Mpa. Also the lifes of Mg-Zn-Mn-Ca alloy were higher than those of Mg-Zn-Mn alloy, and the results of SEM showed fracture surfaces under low temperature had smaller dimples than those under high temperature.

  • PDF

Etching Properties of ZnS:Mn Thin Films in an Inductively Coupled Plasma

  • Kim, Gwan-Ha;Woo, Jong-Chang;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제9권1호
    • /
    • pp.1-5
    • /
    • 2008
  • ZnS is an attractive material for future optical and electrical devices since it has a direct and wide band gap to provide blue emission at room temperature. In this study, inductively coupled $BCl_3/Ar$ plasma was used to etch ZnS:Mn thin films. The maximum etch rate of 164.2 nm/min for ZnS:Mn was obtained at a $BCl_3(20)/Ar(80)$ gas mixing ratio, an rf power of 700 W, a dc bias voltage of -200V, a total gas flow of 20 sccm, and a chamber pressure of 1Pa. The etch behaviors of ZnS:Mn thin films under various plasma parameters showed that the ZnS:Mn were effectively removed by the chemically assisted physical etching mechanism. The surface reaction of the ZnS:Mn thin films was investigated by X-ray photoelectron spectroscopy. The XPS analysis revealed that Mn had detected on the surface ZnS:Mn etched in $BCl_3/Ar$ plasma.

습식공정을 이용한 ZnS:Mn2+계 QD의 합성 조건에 따른 광 특성 변화 연구 (A Study on Photo-Luminescence Spectrum Properties of ZnS:Mn QD Prepared by Wet-Process)

  • 차지민;이윤지;문성철;이성의
    • 한국전기전자재료학회논문지
    • /
    • 제30권1호
    • /
    • pp.42-47
    • /
    • 2017
  • In this study, the physical and optical properties of $ZnS:Mn^{2+}$ Quantum Dot prepared by wet-process condition with Mn/Zn ratio was valuated. The powder characteristics and optical behavior were investigated through XRD, TEM and Photo spectrometer exicted by various UV light source. We found the main peak of ZnS (111) was shifted by 0.8 degree to low angle position with increasing stirring energy from 200 RPM to 600 RPM, which is thought to be the increase of lattice defects during wet process. The photo luminescence at 600 RPM shows also higher blue intensity which is well correlated with XRD results. With increasing Mn/Zn ratio, the PL intensity become higher and shifed by 8.5nm to right side, by the increment of substitutional $Mn^{2+}$ ions.

Ni-Mn-Zn ferrite의 합성과 Mn의 치환량 및 인가자장에 따른 전자기파 흡수 특성 연구 (Electromagnetic wave absorption characteristics in Ni-Mn-Zn Ferrite with varying Mn content and applied magnetic field)

  • 이지혜;이상민;강영민
    • 한국결정성장학회지
    • /
    • 제33권6호
    • /
    • pp.294-302
    • /
    • 2023
  • Ni-Mn-Zn ferrite, Ni0.5-xMnxZn0.5Fe2O4(0 ≤ x ≤ 0.5)를 sol-gel 법으로 합성하여 Mn 치환량 x에 따른 결정 구조와 미세구조, 자기적 특성, 고주파 특성, 그리고 전자기파 흡수 특성을 연구하였다. Mn의 함량이 증가함에 따라 보자력 (HC)에 큰 변화 없이 포화자화값(MS)이 연속적으로 감소하는 것을 확인하였다. Ni-Mn-Zn ferrite-epoxy(10 wt%) 복합체에 대하여 0.1~18 GHz 주파수 범위에서 고주파 복소 유전율(ε', ε'') 및 복소 투자율(µ', µ'') spectra를 측정하고 전송선 이론을 통하여 전자기파 흡수 특성을 평가하였다. 각 시료는 1.5~2.5 GHz 및 6~11 GHz 범위에서 최소 반사손실 RLmin < -40 dB를 만족하는 1, 2차 강한 전자기파 흡수 영역이 존재하였고, Mn이 치환됨에 따라 RLmin 주파수는 저주파 방향으로 이동하였다. 또한 Ni-Zn ferrite(x = 0) 시료에 대하여 자기장(H)을 100 Oe에서 최대 400 Oe까지 단계적으로 인가한 상태로 ε', ε'', µ', µ'' spectra를 얻고 전자기파 흡수 특성을 평가하였다. 인가자장의 증가에 따라 시료의 강자성 공명 주파수가 증가하기 때문에 µ', µ'' spectra도 고주파 방향으로 단계적으로 이동해갔으며 최대 전자기파 흡수 주파수도 이에 대응하여 이동하였다. 이는 Ni-Mn-Zn ferrite에서 전자기파의 흡수는 자기적 손실에 의존하기 때문이며 Mn의 치환이나 인가자장에 의해 µ', µ'' spectra를 조절하면 전자기파 흡수 주파수도 조절할 수 있음을 보여준다. Ni-Zn ferrite-epoxy는 2.8~11.6 GHz에서 RL < -10 dB를 만족하는 광대역 전자기파 흡수 특성을 보였다.

Mg와 Zn이 치환된 $LiMn_2O_4$ 정극 활물질의 제조 및 특성 분석 (Preparation and Analysis of$LiMn_2O_4$ Cathode Material substituted Mg and Zn)

  • 정인성;구할본;한규승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.707-710
    • /
    • 2002
  • Spinel $LiMn_2O_4$ and $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4$ powders were synthesized by solid-state method at $800^{\circ}C$ for 36h. Crystal structure and electrochemical properties were analyzed by X-ray diffraction, charge-discharge test, cyclic voltammetry and ac impedance to $LiMn_2O_4$ and $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$. All cathode material showed spinel structure in X-ray diffraction. $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cell substituted $Mg^{2+}$ and $Zn^{2+}$ showed excellent discharge capacities than other cells, which it presented about 120mAh/g at the 1st cycle and about 73mAh/g at the 250th cycle, respectively. AC impedance of $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cells showed the similar resistance of about $65{\sim}110{\Omega}$ before cycling.

  • PDF

전자빔 증착법으로 제작된 ZnS:Mn 박막의 구조 및 광학적 특성 (Structural and Optical Characteristics of ZnS:Mn Thin Film Prepared by EBE Method)

  • 정해덕;박계춘;이기식
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권10호
    • /
    • pp.1005-1010
    • /
    • 1997
  • ZnS:Mn thin film was made by coevaporation with Electron Beam Evaparation(EBE) method. And structural and optical characteristics of ZnS:Mn thin films were investigated by substrate temperature annealing temperature and dopant Mn. When ZnS:Mn thin film was well deposited with cubic crystalline at substrate temperature of 30$0^{\circ}C$ its surface index was [111] and its lattice constant of a was 5.41$\AA$. Also When ZnA:Mn thin film was well made with hexagonal crystalline at substrate temperature of 30$0^{\circ}C$annealing temperature of 50$0^{\circ}C$and annealing time of 60min its miller indices were (0002) (1011), (1012) and (1120). And its lattice constant of a and c was 3.88$\AA$and 12.41$\AA$ respectively. Finally hexagonal ZnS:Mn thin film with dopant Mn of 0.5wt% had fundamental absorption wavelength of 342nm. And so its energy bandgap was about 3.62eV.

  • PDF

Spinel Ferrite에 관한 연구 (I) Mn-Zn계 Ferrite의 자기특성에 대한 희토류산화물의 첨가효과 (Studies on Spinel Ferrites (I) Effects of Addition of Rare-Earth Oxides on the Magnetic Properties of Mn-Zn Ferrites)

  • 김태옥
    • 한국세라믹학회지
    • /
    • 제14권2호
    • /
    • pp.78-81
    • /
    • 1977
  • The effects of variation in composition and the addition of small amount of the rare-earth oxides La2O3, CeO2 and Sm2O3 on the magnetic properties of Mn-Zn system ferrites, 0.5MnO.0.5ZnO.(1+0.1X) Fe2O3(X=-1, 0, 1, 2), were investigated in the range of frequencies of 0.1~100 kHz. It was shown that the magnetic permeability of the specimens with the composition Mn 0.5 Zn 0.5 Fe2O4 was maximum in the Mn-Zn system ferrites, and that the addition of a small amount of the rare-earth oxides to the composition 0.5 MnO.0.5ZnO.0.9 Fe2O3 caused the sharp increase of magnetic permeability and the decrease of the loss factors.

  • PDF

HWE 방법에 의한 ZnMnTe 단결정 박막의 성장 및 특성연구 (Characterization and Growth of the ZnMnTe epilayers by HWE)

  • 윤만영;박재준;박재규;유영문;최용대
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.208-211
    • /
    • 2001
  • Hot wall epitaxy 법으로 GaAs(100) 기판 위에 $Zn_{1-x}Mn_xTe(0{\leq}x{\leq}1)$ 단결정 박막을 성장하였다. XRD 스펙트럼으로부터 $Zn_{1-x}Mn_xTe$ epilayer들이 전 영역에 걸쳐 zincblende 구조임을 알았다. double crystal rocking curve(DCRC)로부터 격자상수를 계산하고 이훌 이용하여 조성비를 계산하였다. ZnMnTe 단결정 박막의 DCRC 반치폭은 Mn 조성비가 증가함에 따라 급격하게 증가하다가 포화되는 모습을 나타내었다

  • PDF

Preparation and EPR Characteristics of $ZnGa_2O_4$ : Mn Phosphor

  • 정하균;박도순;박윤창
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권12호
    • /
    • pp.1320-1325
    • /
    • 1998
  • ZnGa2O4: Mn phosphors were prepared by a new chemical process, and their photoluminescence and electron paramagnetic resonance characteristics were investigated. The chemical method showed a low temperature formation of phosphors and a rod-type shape of particles. The strong ultraviolet emission was observed in the undoped ZnGa2O4 phosphor, while strong green emission in the Mn2+-activated ZnGa2O4 phosphor. The green emission intensity of the phosphor prepared by the chemical method was much stronger than that prepared by the conventional method. This difference with preparation methods was interpreted as due to the difference in the distribution of Mn2+ in the host lattice. From EPR results, it was explained that the line intensity of the undoped ZnGa2O4 is associated with the electrical conductivity of this material and the concentration quenching of green luminescence of ZnGa2O4: Mn at higher Mn2+ concentration is attributed to the coupling by exchange interaction between Mn2+ ions.