DOI QR코드

DOI QR Code

Electromagnetic wave absorption characteristics in Ni-Mn-Zn Ferrite with varying Mn content and applied magnetic field

Ni-Mn-Zn ferrite의 합성과 Mn의 치환량 및 인가자장에 따른 전자기파 흡수 특성 연구

  • Ji-Hye Lee (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Sang-Min Lee (Division of Creative Convergence, Korea National University of Transportation) ;
  • Young-Min Kang (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 이지혜 (한국교통대학교 응용화학에너지공학부 에너지소재공학 전공) ;
  • 이상민 (한국교통대학교 창의융합학부) ;
  • 강영민 (한국교통대학교 응용화학에너지공학부 에너지소재공학 전공)
  • Received : 2023.11.17
  • Accepted : 2023.11.30
  • Published : 2023.12.31

Abstract

Ni-Mn-Zn ferrite, Ni0.5-xMnxZn0.5Fe2O4 (0 ≤ x ≤ 0.5), was synthesized using the sol-gel method to investigate the crystal structure, microstructure, magnetic properties, high-frequency characteristics, and electromagnetic (EM) wave absorption characteristics as a function of Mn substitution. As the Mn content increased, a continuous decrease in saturation magnetization (MS) was observed with little change in coercivity (HC). Samples for each composition (x) exhibited strong EM wave absorption performance with first and second strong EM wave absorption regions satisfying minimum reflection loss, RLmin < -40 dB in the 1.5~2.5, 6~11 GHz range, respectively. The EM wave absorption in Ni-Mn-Zn ferrite depends on magnetic loss, and adjusting µ' and µ'' spectra by Mn substitution or H field allows control of the EM wave absorption frequency.

Ni-Mn-Zn ferrite, Ni0.5-xMnxZn0.5Fe2O4(0 ≤ x ≤ 0.5)를 sol-gel 법으로 합성하여 Mn 치환량 x에 따른 결정 구조와 미세구조, 자기적 특성, 고주파 특성, 그리고 전자기파 흡수 특성을 연구하였다. Mn의 함량이 증가함에 따라 보자력 (HC)에 큰 변화 없이 포화자화값(MS)이 연속적으로 감소하는 것을 확인하였다. Ni-Mn-Zn ferrite-epoxy(10 wt%) 복합체에 대하여 0.1~18 GHz 주파수 범위에서 고주파 복소 유전율(ε', ε'') 및 복소 투자율(µ', µ'') spectra를 측정하고 전송선 이론을 통하여 전자기파 흡수 특성을 평가하였다. 각 시료는 1.5~2.5 GHz 및 6~11 GHz 범위에서 최소 반사손실 RLmin < -40 dB를 만족하는 1, 2차 강한 전자기파 흡수 영역이 존재하였고, Mn이 치환됨에 따라 RLmin 주파수는 저주파 방향으로 이동하였다. 또한 Ni-Zn ferrite(x = 0) 시료에 대하여 자기장(H)을 100 Oe에서 최대 400 Oe까지 단계적으로 인가한 상태로 ε', ε'', µ', µ'' spectra를 얻고 전자기파 흡수 특성을 평가하였다. 인가자장의 증가에 따라 시료의 강자성 공명 주파수가 증가하기 때문에 µ', µ'' spectra도 고주파 방향으로 단계적으로 이동해갔으며 최대 전자기파 흡수 주파수도 이에 대응하여 이동하였다. 이는 Ni-Mn-Zn ferrite에서 전자기파의 흡수는 자기적 손실에 의존하기 때문이며 Mn의 치환이나 인가자장에 의해 µ', µ'' spectra를 조절하면 전자기파 흡수 주파수도 조절할 수 있음을 보여준다. Ni-Zn ferrite-epoxy는 2.8~11.6 GHz에서 RL < -10 dB를 만족하는 광대역 전자기파 흡수 특성을 보였다.

Keywords

Acknowledgement

본 연구는 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신사업(2021RIS-001(1345370811)) 및 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 기본 연구(NRF-2022R1F1A1062933)의 결과물입니다.

References

  1. J. Smit and H.P.J. Wijin, "Ferrites", Philips' Technical Library (Eindhoven, Netherlands, 1959).
  2. A. Goldman, "Handbook of Modern Ferromagnetic Materials" (Kulwer Academic Publishers, Boston, 1999).
  3. M. Pardavi-Horvath, "Microwave applications of soft ferrites", J. Magn. Magn. Mater. 215-216 (2000) 171.
  4. W. Hu, N. Qin, G. Wu, Y. Lin, S. Li and D. Bao, "Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances", J. Am. Chem. Soc. 134 (2012) 14658.
  5. J. Gunjakar, A. More, K. Gurav and C. Lokhande, "Chemical synthesis of spinel nickel ferrite (NiFe2O4) nano-sheets", Appl. Surf. Sci. 18 (2008) 5844.
  6. A. Lassoued, M. Lassoued, B. Dkhil, S. Ammar and A. Gadri, "Nanocrystalline NixCo(0.5-x)Zn0.5Fe2O4 ferrites: fabrication through co-precipitation route with enhanced structural, magnetic and photo-catalytic activity", J. Meter. Sci. 29 (2018) 7344.
  7. Y. Liu, S. Wei, B. Xu, Y. Wang, H. Tian and H. Tong, "Effect of heat treatment on microwave absorption properties of Ni-Zn-Mg-La ferrite nanoparticles", J. Magn. Magn. Mater. 349 (2014) 57.
  8. L. Wang, H. Dong, J. Li, J. Hua, S. Xu, M. Feng and H. Li, "Effects of annealing temperature on structural and magnetic properties of Ni0.8Zn0.2Fe2O4 thin films", Ceram. Int. 40 (2014) 10323.
  9. J. Azadmanjiri, "Structural and electromagnetic properties of Ni-Zn ferrites prepared by sol-gel combustion method", Mater. Chem. Phys. 109 (2008) 109.
  10. K.R. Mun and Y.M. Kang, "Synthesis and characterization of NixZn1-xFe2O4", J. Korean Magn. Soc. 28 (2018) 93.
  11. K.-R. Mun and Y.-M. Kang, "Modulation of magnetic properties in Ni0.4Zn0.6Fe2O4 spinel ferrite by additives", J. Magn. 24 (2019) 499.
  12. N.N. Jiang, Y. Yang, Y. Zhang, J. Zhou and P. Liu, "Influence of zinc concentration on structure, complex permittivity and permeability of Ni-Zn ferrites at high frequency", J. Magn. Magn. Mater. 401 (2016) 370.
  13. A. Albuquerque, J. Ardisson and W. Macedo, "A study of nanocrystalline NiZn-ferrite-SiO2 synthesized by solgel", J. Magn. Magn. Mater. 192 (1999) 277.
  14. J.E. Yoo, T.W. Hong and Y.-M. Kang, "Structure and magnetic properties of Ni-Zn ferrite prepared by sol-gel method", J. Korean Magn. Soc. 28 (2018) 219.
  15. J.E. Yoo and Y.-M. Kang, "Electromagnetic wave absorbing properties of Ni-Zn ferrite powder-epoxy composites in GHz range", J. Magn, Magn. Mater. 513 (2020) 167075.
  16. J.E. Yoo and Y.-M. Kang, "Fabrication and electromagnetic wave absorption properties of Co-Cu-substituted Ni-Zn spinel ferrite-epoxy composites", Korean J. Met. Mater. 58 (2020) 887.
  17. I.H. Gul, W. Ahmed and A. Maqsood, "Electrical and magnetic characterization of nanocrystalline Ni-Zn ferrite synthesis by co-precipitation route", J. Magn. Magn. Mater. 320 (2008) 270.
  18. X. Peng, K. Peng and W. Zhang, "Synthesis of low core loss Finemet/Ni0.5Zn0.5Fe2O4 composites by co-precipitation method", Mater. Res. Bull. 100 (2018) 138.
  19. C.-K. Kim, J.-H. Lee, S. Katoh, R. Murakami and M. Yoshimur, "Synthesis of Co-, Co-Zn and Ni-Zn ferrite powders by the microwave-hydrothermal method", Mater. Res. Bull. 36 (2001) 2241.
  20. H.-W. Wang and S.-C. Kung, "Crystallization of nano-sized Ni-Zn ferrite powders prepared by hydrothermal method", J. Magn. Magn. Mater. 270 (2004) 230.
  21. J.-H. Lee, M.-G. Kang and Y.-M. Kang, "Effects of Mn substitution site and synthesis method on the electromagnetic wave absorption properties of Ni-Zn spinel ferrites", J. Korean Magn. Soc. 33 (2023) 1.
  22. J. Ma, B. Zhao, H. Xiang, F.-Z. Dai, Y. Liu, R. Zhang and Y. Zhou, "High-entropy spinel ferrites MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu, Zn) with tunable electromagnetic properties and strong microwave absorption", J. Adv. Ceram. 11 (2022) 754.
  23. Y. Naito and K. Suetake, "Application of ferrite to electromagnetic wave absorber and its characteristics", IEEE Trans. Microw. Theory Tech. 19 (1971) 65.
  24. J.-H. Heo, J.-Y. You and Y.-M. Kang, "Synthesis, characterization, and electromagnetic wave absorption properties of Sr3Co2Fe24O41 hexaferrites", J. Magn. Magn. Mater. 517 (2022) 169051.
  25. C. Kittel, "Introduction to Solid State Physics", 8th ed. (John Wiley & Sons, Inc, 2004) p. 381.