• Title/Summary/Keyword: Mn doping

Search Result 168, Processing Time 0.023 seconds

Luminescence of orange-emitting ZnS:Mn,Cu,Cl for EL device

  • Lee, Hak-Soo;Han, Sang-Do;Gwak, Ji-Hye;Han, Chi-Hwan;Kim, Jung-Duk
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1093-1095
    • /
    • 2006
  • An orange-emitting phosphor for inorganic electroluminescent device has been studied. Cu and Cl were co-doped in Mn-doped ZnS for a high-performing phosphor. The effect of $Mn^{2+}-doping$ concentration as well as $Mg^{2+}-sensitizer$ addition on the luminescence characteristics has been investigated.

  • PDF

Luminescent Properties of (Zn1-xCax)2SiO4:Mn,Al Green Phosphors for Various Concentration ((Zn1-xCax)2SiO4:Mn 녹색 형광체의 농도 변화에 따른 발광특성)

  • Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.323-326
    • /
    • 2010
  • $(Zn_{1-x}Ca_x)_2SiO_4$:Mn phosphors doped with Ca were synthesized by solid state reaction method. $(Zn_{1-x}Ca_x)_2SiO_4$:Mn phosphors showed XRD patterns of Willemite structure. Also, $CaSiO_3$ structure and new peak near 610 nm in $(Zn_{1-x}Ca_x)_2SiO_4$:Mn with increasing value of x were observed from XRD and PL. The new peak near 610 nm in $(Zn_{1-x}Ca_x)_2SiO_4$:Mn with doping Ca was attributed to formation of $CaSiO_3$.

Roles of Fluorine-doping in Enhancing Initial Cycle Efficiency and SEI Formation of Li-, Al-cosubstituted Spinel Battery Cathodes

  • Nguyen, Cao Cuong;Bae, Young-San;Lee, Kyung-Ho;Song, Jin-Woo;Min, Jeong-Hye;Kim, Jong-Seon;Ko, Hyun-Seok;Paik, Younkee;Song, Seung-Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.384-388
    • /
    • 2013
  • Fluorine-doping on the $Li_{1+x}Mn_{1.9-x}Al_{0.1}O_4$ spinel cathode materials is found to alter crystal shape, and enhance initial interfacial reactivity and solid electrolyte interphase (SEI) formation, leading to improved initial coulombic efficiency in the voltage region of 3.3-4.3 V vs. Li/$Li^+$ in the room temperature electrolyte of 1 M $LiPF_6$/EC:EMC. SEM imaging reveals that the facetting on higher surface energy plane of (101) is additionally developed at the edges of an octahedron that is predominantly grown with the most thermodynamically stable (111) plane, which enhances interfacial reactivity. Fluorine-doping also increases the amount of interfacially reactive $Mn^{3+}$ on both bulk and surface for charge neutrality. Enhanced interfacial reactivity by fluorine-doping attributes instant formation of a stable SEI layer and improved initial cyclic efficiency. The data contribute to a basic understanding of the impacts of composition on material properties and cycling behavior of spinel-based cathode materials for lithium-ion batteries.

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries

  • Han, Dongwook;Park, Kwangjin;Park, Jun-Ho;Yun, Dong-Jin;Son, You-Hwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.180-186
    • /
    • 2018
  • We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.

Electrochemical Properties of Al Doped Li(Ni1/3Co1/3Mn1/3-xAlx)O2, Cathode Materials (알루미늄이 첨가된 Li(Ni1/3Co1/3Mn1/3-xAlx)O2 양극활물질의 전기화학적 특성)

  • Kim Seon-Hye;Shim Kwang-Bo;Kim Chang-Sam
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Cathode materials of Al-doped $Li(Ni_{1/3}Co_{1/3}Mn_{1/3-x}Al_x)O_2$ (x=0.0, 0.005, 0.01 0.05) for lithium ion batteries were synthesized with ultra-sonic spray pyrolysis method and single-step heat treatment. No secondary phases were found in all synthesized powders. The intensity ratio of $I_{003}\;to\;I_{104}$, however, slightly decreased and the particle size increased with the Al contents. The cells with bare, 0.5 and 1.0 at% Al-doped powders showed the initial discharge capacities of 182, 180 and $184mAhg^{-1}$ in a voltage range of $3.0\sim4.5V$ at 1C rate, and the capacity retentions of 81, 77 and 78% at the end of 30 cycles, respectively. But in the voltage range of $3.0\sim4.6V$, the Al-doping significantly enhanced the cycle stability. For example, the discharge capacity after 50 cycles was maintained to 70% in the 0.5 at% Al-doped sample compared to only 30% in no doped sample. The improvement of the cycle stability was thought to be due to $Mn^{3+}$ ion decrease as the Al doping from the XPS analysis results.

Capacitance Aging Behavior of Acceptor-Doped BaTiO3 under DC Electrical Field (직류 전계에 의한 Acceptor 첨가 BaTiO3의 유전특성 열화 현상)

  • Hahn, Dong-Woo;Han, Young-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.219-223
    • /
    • 2009
  • Effects of MgO or $R_2O_3$(R:Dy, Ho, Yb) on the capacitance aging behavior of multilayer ceramic capacitors (MLCCs) based on $BaTiO_3$ dielectrics under DC electrical fields has been studied. At a DC field of 1 $V{/\mu}m$, the capacitance of MLCC specimens dropped immediately in a very short period (<10 s, the first stage) and then decreased continuously with time (the second stage). Mn doping significantly increased the aging rate in the second stage. The addition of MgO or $R_2O_3$ notably decreased the second stage aging rate of Mn-doped specimens. Yb doping gives rise to the lowest aging rate in the second stage, which is due to the larger population of defect dipoles associated with oxygen vacancies.

Controlling Quantum Confinement and Magnetic Doping of Cesium Lead Halide Perovskite Nanocrystals

  • Dong, Yitong;Parobek, David;Son, Dong Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.515-526
    • /
    • 2018
  • Cesium lead halide ($CsPbX_3$) nanocrystals have emerged as a new family of semiconductor nanomaterials that can outperform existing semiconductor nanocrystals owing to their superb optical and charge transport properties. Although these materials are expected to have many superior properties, control of the quantum confinement and isoelectronic magnetic doping, which can greatly enhance their optical, electronic, and magnetic properties, has faced significant challenges. These obstacles have hindered full utilization of the benefits that can be obtained by using $CsPbX_3$ nanocrystals exhibiting strong quantum confinement or coupling between exciton and magnetic dopants, which have been extensively explored in many other semiconductor quantum dots. Here, we review progress made during the past several years in tackling the issues of introducing controllable quantum confinement and doping of $Mn^{2+}$ ions as the prototypical magnetic dopant in colloidal $CsPbX_3$ nanocrystals.

The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping (Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성)

  • Jang, Byeong-Chan;Yoo, Gi-Won;Yang, Su-Bin;Min, Song-Gi;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.222-228
    • /
    • 2014
  • Ni-rich system $Li[Ni_{1-x-y}Co_xMn_y]O_2$ of lithium secondary battery cathode material keep a high discharge capacity. However, by the Ni content increases, there is a problem that the electrochemical properties and stability of the structure are reduced. In order to solve these problems, research for positive ion doping is performed. The one of the cathode material, barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01), was synthesized by the precursor, $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$, from the co-precipitation method. The barium doped materials have studied the structural and electrochemical properties. The analysis of structural properties, results of X-ray diffraction analysis, and those results confirmed the change of the lattice from the binding energy in the structure by barium doping. Increased stability of the layered structure was observed by $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor) ratio decrease. we expected that the electrochemical characteristics are improved. 23 mAh/g discharge capacity of barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01) electrode is higher than discharge capacity of $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ due to decrease overvoltage. And, through the structural stability was confirmed that improved the cycle characteristics. We caused a reduction in charge transfer resistance between the electrolyte and the electrode was confirmed that the C-rate characteristics are improved.

Effect of ZnS:Mn, Dy Yellow Phosphor on White LEDs Characteristics (백색 LED의 특성에 대한 ZnS:Mn, Dy 황색 형광체의 영향)

  • Shin, Deuck-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.295-298
    • /
    • 2011
  • ZnS:Mn, Dy yellow phosphors for White Light Emitting Diode were synthesized by a solid state reaction method using ZnS, $MnSO_4{\cdot}5H_2O$, S and $DyCl_3{\cdot}6H_2O$ powders as starting materials. The mixed powder was sintered at $1000^{\circ}C$ for 4 h in an air atmosphere. The photoluminescence of the ZnS:Mn, Dy phosphors showed spectra extending from 480 to 700 nm, peaking at 580 nm. The photoluminescence of 580 nm in the ZnS:Mn, Dy phosphors was associated with $^4T_1{\rightarrow}^6A_1$ transition of $Mn^{2+}$ ions. The highest photoluminescence intensity of the ZnS:Mn, Dy phosphors under 450 nm excitation was observed at 4 mol% Dy doping. The enhanced photoluminescence intensity of the ZnS:Mn, Dy phosphors was explained by energy transfer from $Dy^{3+}$ to $Mn^{2+}$. The CIE coordinate of the 4 mol% Dy doped ZnS:Mn, Dy was X = 0.5221, Y = 0.4763. The optimum mixing conditions for White Light Emitting Diode was obtained at the ratio of epoxy : yellow phosphor = 1:2 form CIE coordinate.

Photoluminescence properties of Mn4+-activated Li2ZnSn2O6 red phosphors

  • Choi, Byoung Su;Lee, Dong Hwa;Ryu, Jeong Ho;Cho, Hyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.80-83
    • /
    • 2019
  • The Mn4+-activated Li2ZnSn2O6 (LZSO:Mn4+) red phosphors were synthesized by the solid-state reaction at temperatures of 1100-1400 ℃ in air. The synthesized LZSO:Mn4+ phosphors were confirmed to have a single hexagonal LZSO phase without the presence of any secondary phase formed by the Mn4+ addition. With near UV and blue excitation, the LZSO:Mn4+ phosphors exhibited a double band deep-red emission peaked at ~658 nm and ~673 nm due to the 2E → 4A2 transition of Mn4+ ion. PL emission intensity showed a strong dependence on the Mn4+ doping concentration and the 0.3 mol% Mn4+-doped LZSO phosphor produced the strongest PL emission intensity. Photoluminescence emission intensity was also found to be dependent on the calcination temperature and the optimal calcination temperature for the LZSO:Mn4+ phosphors was determined to be 1200 ℃. Dynamic light scattering (DLS) and field-effect scanning electron microscopy (FE-SEM) analysis revealed that the 0.3 mol% Mn4+-doped LZSO phosphor particles have an irregularly round shape and an average particle size of ~1.46 ㎛.