Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.2.384

Roles of Fluorine-doping in Enhancing Initial Cycle Efficiency and SEI Formation of Li-, Al-cosubstituted Spinel Battery Cathodes  

Nguyen, Cao Cuong (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
Bae, Young-San (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
Lee, Kyung-Ho (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
Song, Jin-Woo (Graduate School of Green Energy Technology, Chungnam National University)
Min, Jeong-Hye (Graduate School of Green Energy Technology, Chungnam National University)
Kim, Jong-Seon (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
Ko, Hyun-Seok (POSCO ES Materials)
Paik, Younkee (Korean Basic Science Institute)
Song, Seung-Wan (Department of Fine Chemical Engineering & Applied Chemistry, Chungnam National University)
Publication Information
Abstract
Fluorine-doping on the $Li_{1+x}Mn_{1.9-x}Al_{0.1}O_4$ spinel cathode materials is found to alter crystal shape, and enhance initial interfacial reactivity and solid electrolyte interphase (SEI) formation, leading to improved initial coulombic efficiency in the voltage region of 3.3-4.3 V vs. Li/$Li^+$ in the room temperature electrolyte of 1 M $LiPF_6$/EC:EMC. SEM imaging reveals that the facetting on higher surface energy plane of (101) is additionally developed at the edges of an octahedron that is predominantly grown with the most thermodynamically stable (111) plane, which enhances interfacial reactivity. Fluorine-doping also increases the amount of interfacially reactive $Mn^{3+}$ on both bulk and surface for charge neutrality. Enhanced interfacial reactivity by fluorine-doping attributes instant formation of a stable SEI layer and improved initial cyclic efficiency. The data contribute to a basic understanding of the impacts of composition on material properties and cycling behavior of spinel-based cathode materials for lithium-ion batteries.
Keywords
Spinel cathode; Fluorine-doping; Interfacial reactivity; SEI formation; Lithium-ion batteries;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ohzuku, T.; Kitagawa, M.; Hirai, T. J. Electrochem. Soc. 1990, 137, 769.   DOI
2 Hunter, J. C. J. Solid State Chem. 1981, 39, 142.   DOI   ScienceOn
3 Gummow, R. J.; Kock, A. de; Thackeray, M. M. Solid State Ionics 1994, 69, 59.   DOI   ScienceOn
4 Tarascon, J.-M.; Coowar, F.; Amatucci, G. G.; Shokoohi, F. K.; Guyomard, D. G. J. Power Sources 1995, 54, 103.   DOI   ScienceOn
5 Son, H.-Y.; Lee, M.-Y.; Ko, H.-S.; Lee, H. J. Korean Electrochem. Soc. 2011, 14, 131.   DOI   ScienceOn
6 Myung, S.-T.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2001, 148, A482.   DOI   ScienceOn
7 Bakenov, Z.; Taniguchi, I. Solid State Ionics 2005, 176, 1027.   DOI   ScienceOn
8 Xia, Y.; Zhang, Q.; Wang, H.; Nakamura, H.; Noguchi, H.; Yoshio, M. Electrochim. Acta 2007, 52, 4708.   DOI   ScienceOn
9 Song, J.-W.; Nguyen, C. C.; Choi, H.; Lee, K.-H.; Han, K.-H.; Kim, Y.-J.; Choy, S.; Song, S.-W. J. Electrochem. Soc. 2011, 158, A458.   DOI   ScienceOn
10 Kang, Y.-J.; Kim, J.-H.; Sun, Y.-K. J. Power Sources 2005, 146,237.
11 Choi, W.; Manthiram, A. Solid State Ionics 2007, 178, 1541.   DOI   ScienceOn
12 Feng, C.; Li, H.; Zhang, C.; Guo, Z.; Wu, H.; Tang, J. Electrochim. Acta 2012, 61, 87.   DOI   ScienceOn
13 Amatucci, G. G.; Pereira, N.; Zheng, T.; Tarascon, J.-M. J. Electrochem. Soc. 2001, 148, A171.   DOI   ScienceOn
14 Yonezawa, S.; Yamasaki, M.; Takashima, M. J. Fluorine Chem. 2004, 125, 1657.   DOI   ScienceOn
15 Oh, S. W.; Park, S. H.; Kim, J. H.; Bae, Y. C.; Sun, Y. K. J. Power Sources 2006, 157, 464.   DOI   ScienceOn
16 Stroukoff, K. R.; Manthiram, A. J. Mater. Chem. 2011, 21, 10165.   DOI   ScienceOn
17 He, X.; Li, J.; Cai, Y.; Wang, Y.; Ying, J.; Jiang, C.; Wan, C. Solid State Ionics 2005, 176, 2571.   DOI   ScienceOn
18 NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, version 3.5. http://srdata.nist.gov/xps/ (accessed July 2012).
19 Shannon, R. D. Acta Cryst. A 1976, 32, 751.   DOI
20 Huang, M.-R.; Lin, C.-W.; Lu, H.-Y. Appl. Surf. Sci. 2001, 177,103.   DOI   ScienceOn
21 Song, S.-W.; Zhuang, G. V.; Ross, P. N., Jr. J. Electrochem. Soc. 2004, 151, A1162.   DOI   ScienceOn
22 Rougier, A.; Striebel, K. A.; Wen, S. J.; Richardson, T. J.; Reade, R. P.; Cairns, E. J. Appl. Surf. Sci. 1998, 134, 107.   DOI   ScienceOn
23 Socrates, G. Infrared Characteristic Group Frequencies, 2nd ed.; John Wiley & Sons: New York, 1994.
24 Zhuang, G. V.; Ross, P. N., Jr. Electrochem. Solid-State Lett. 2003, 6, A136.   DOI   ScienceOn
25 Yang, H.; Zhuang, G. V.; Ross, P. N., Jr. J. Power Sources 2006, 161, 573.   DOI   ScienceOn