• Title/Summary/Keyword: Mixture Gases

Search Result 313, Processing Time 0.022 seconds

A Study of the Transient Characteristics of LRE Startup for Using Several Starting Gases (다양한 구동가스를 사용한 액체로켓엔진의 시동특성 연구)

  • Moo, Yoon-Wan;Kim, Seung-Han;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.216-220
    • /
    • 2006
  • In this study, it was investigated that the characteristics of startup and compatibility using several type hot and cold gases. The characteristics of starting LRE by pyro starter was compared with that by a He spinner. The compatibility of pyre gas, a gaseous He, H2+N2 mixture gas, and air was investigated by a simple 1D turbine analysis considered the properties of each gases and turbine efficiency. Most of them were compatible to start up the LRE but air was properly used only when the turbine was low power mode.

  • PDF

Deposition of c-BN Films on Tungsten Carbide Insert Tool by Microwave Plasma Enhanced Chemical Vapor Deposition(MPECVD) (MPECVD법에 의한 초경인서트 공구의 c-BN 박막 증착)

  • Yoon, Su-Jong;Kim, Tae-Gyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.43-47
    • /
    • 2008
  • Cubic boron nitride(c-BN) films were deposited on tungsten carbide insert tool by microwave plasma enhanced chemical vapor deposition(MPECVD) from a gas mixture of triethyl borate$(B(C_2H_5O)_3)$, ammonia $(NH_3)$, hydrogen$(H_2)$ and argon(Ar). The qualities of deposited thin film were investigated by x-ray diffrac-tion(XRD), field emission scanning electron microscopy(FE-SEM) and micro Raman spectroscope. The surface morphologies of the synthesised BN as well as crystallinity appear to be highly dependent on the flow rate of $B(C_2H_5O)_3$ and $(NH_3)$ gases. The deposited film had more crystallized phases with 5 scem of $B(C_2H_5O)_3$ and $(NH_3)$ gases than with 2 sccm, and the phase was identified as c-BN by micro Raman spectroscope and XRD. The adhesion strength were also increased with increasing flow rates of $B(C_2H_5O)_3$ and $(NH_3)$ gases.

Study on Fluid Inclusion and Genetic Modelling of Pegmatites at the Maewol Feldspar Mine (매월장석광산(梅月長石鑛山)의 페그마타이트내(內) 유체포유물(流體包有物)과 그 성인(成因)에 관한 모델 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.21 no.4
    • /
    • pp.381-387
    • /
    • 1988
  • Maewol Feldspar Mine produces feldspar ore from pegmatites. K-Rb Age of muscovite is 137.7Ma. Fluid inclusions in quartz crystal of the pegmatite show bimodal distribution of homogenization temperatures. The high homogenization temperatures range from 290 to $302^{\circ}C$ while low homogenization temperatures range from 157 to $195^{\circ}C$. Three phases liquid $CO_2$ bearing inclusions indicate $CO_2$ gases were abundantly mixed with granitic melt until the pegmatic magma melt cooled to $290^{\circ}C$. Low density of the magmatic melt relative to the same volume of granitic magma is due to mixture of volatiles(mainly $CO_2$ gases) with the melt and larger space and slow cooling allowed to grow crystals of the pegmatic magma.

  • PDF

Emission Characteristics of Discharge Tube with Mixed Gases

  • Jo, Ju-Ung;Park, Yong-Sung;Lee, Jong-Chan;Masaharu Aono;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.136-139
    • /
    • 2003
  • The positive column of a discharge tube filled with a mixture of mercury-xenon has a tendency to become contracted at room temperature. However, once the tube temperature is raised over 50 [$^{\circ}C$], the positive column changes from a contracted state to a diffused state. The xenon emission is stronger in the contracted positive column than in the diffused column. Alternatively, the mercury emission is more intense in the diffused positive column, and the luminance of the phosphor coating on the inner surface of the tube is higher than that in the contracted positive column. Moreover, higher luminance can be obtained by increasing the xenon pressure.

Thermodynamics of Mixtures (I). Ideal Gases (혼합물의 열역학 (제1보). 이상기체)

  • C. K. Yun
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.324-331
    • /
    • 1973
  • We study a mixture of ideal gases by use of recently developed methods in continuum thermodynamics of irreversible processes. A complete form of the free energy function and the gas law for each component are derived directly from an entropy production inequality by assuming that: (1) Constitutive functions depend on the mass densities, the diffusion velocities, the temperature and its gradient only. (2) Phenomenological coefficients appearing in an extra entropy flux are material constants. (3) The internal energy density per unit mass is independent of the total mass density (Joule).

  • PDF

Radiative Transfer Solutions for Purely Absorbing Gray and Nongray Gases Within a Cubical Enclosure

  • Kim, Tae-Kuk;Park, Won-Hee;Lee, Chang-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.752-763
    • /
    • 2001
  • Although there are many different solution schemes proposed for multidimensional radiative transfer, reference solutions to benchmark these methods are very rare in the literature. In this paper we produced some accurate solutions for purely absorbing gray and nongray gases including H$_2$O and CO$_2$by using the discrete transfer method with sufficiently accurate T(sub)95 quadrature set. The spectral transmittances of the mixtures of H$_2$O and CO$_2$are estimated by using the narrow band model. The gray gas solutions are obtained for different absorption coefficients, and the nongray real gas solutions are obtained for different mixture fractions of H$_2$O and CO$_2$. The numerical solutions presented in this paper are proved to be sufficiently accurate as compared to the available exact solutions and they may be used as reference solutions in evaluating various solution schemes.

  • PDF

Chemical structure evolution of low dielectric constant SiOCH films during plasma enhanced plasma chemical vapor deposition and post-annealing procedures

  • Xu, Jun;Choi, Chi-Kyu
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.34-46
    • /
    • 2002
  • Si-O-C-H films with a low dielectric constant were deposited on a p-type Si(100) substrate using a mixture gases of the bis-trimethylsilyl-methane (BTMSM) and oxygen by an inductively coupled plasma chemical vapor deposition (ICPCYD). High density plasma of about $~10^{12}\textrm{cm}^{-3}$ is obtained at low pressure (<400 mTorr) with rf power of about 300W in ICPCVD where the BTMSM and $O_2$ gases are fully dissociated. Fourier transform infrared (FTIR) spectra and X-ray photoelectron spectroscopy (XPS) spectra show that the film has $Si-CH_3$ and OH-related bonds. The void within films is formed due to $Si-CH_3$ and OH-related bonds after annealing at $500^{\circ}C$ for the as-deposition samples. The lowest relative dielectric constant of annealed film at $500^{\circ}C$ is about 2.1.

  • PDF

Simple Bluetooth Wireless Multi-gas Measurement System (간단한 블루투스 무선다중가스센서 계측시스템)

  • Kim, Chul min;Kim, Doyoon;Kim, Yeonsu;Kim, Gyu-tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.51-54
    • /
    • 2020
  • To develop gas-distinguishing sensor system, it is highly required to integrate multiple sensors for effective detection of a single targeted gas or mixture of gases. In addition, it is important to collect the reliable data from individual sensors into one integrated measuring device. Collecting the data of toxic gases on the spot should be done without inhalation. We suggest simple wirelessly running system for data collection that guarantees both reliability of data sources and safety. Here, we made a multi-gas measuring instrument(device) combined with Bluetooth module which provides a safe and precise big data accumulation system.

Characterization of Carbon Molecular Sieve for Separating CH4 Gas (메탄가스 분리용 탄소분자체 특성 연구)

  • Lee Byum-Suk;Kim Taik-Nam;Kim Yun-Jong
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.157-162
    • /
    • 2004
  • The object of this research is to develop a carbon molecular sieve(below CMS) which can separate selectively to convert mixture gases spout at waste landfill into fuel. And this research is meaningful from the viewpoint of a quality improvement of CH$_4$ gas and an utilization of by-product. CMS was prepared using coconut shell powder as starting material and the effects of activators, temperature and modifier on the reaction were investigated in this research. Also, pore diameter, surface area of CMS and adsorption rate were measured and studied by cahn balance and ASAP2010. Its specific surface area and pore distribution were controlled easily at 800^{\circ}C and adsorption rate was very good. The CMS prepared in this research is shown to be able to separate landfill gases very effectively.

Effect of post-annealing on single-walled carbon nanotubes synthesized by arc-discharge

  • Park, Suyoung;Choi, Sun-Woo;Jin, Changhyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.388-394
    • /
    • 2019
  • In this study, high-purity single-walled carbon nanotubes (SWCNTs) were prepared by removing the unreacted metal constituents and amorphous carbon impurities using a post-annealing process. Unlike conventional thermal processing techniques, this technique involved different gas atmospheres for efficient removal of impurities. A heat treatment was conducted in the presence of chlorine, oxygen, and chlorine + oxygen gases. The nanotubes demonstrated the best characteristics, when the heat treatment was conducted in the presence of a mixture of chlorine and oxygen gases. The scanning electron microscopy, transmission electron microscopy, ultraviolet absorbance, and sheet resistance measurements showed that the heat treatment process efficiently removed the unreacted metal and amorphous carbon impurities from the as-synthesized SWCNTs. The high-purity SWCNTs exhibited improved electrical conductivities. Such high-purity SWCNTs can be used in various carbon composites for improving the sensitivity of gas sensors.