• Title/Summary/Keyword: Mixing Model

Search Result 1,253, Processing Time 0.028 seconds

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

The differences in the potential energy anomaly for analyzing mixing and stratification between 2D and 3D model

  • Minh, Nguyen Ngoc;Hwang, Jin Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.240-240
    • /
    • 2015
  • As Simpson et al. (1990) emphasized the importance of the straining process in the stratification and mixing in the estuarine circulation process, various researches have investigated on the relative contribution of each process to the overall potential energy anomaly dynamics. However, many numerical works have done only for two dimensional modeling along channel or the short distance cross sectional three dimensional simulations as Burchard et al. (2008) and the estuarine channel was not simulated so far. But, in the study on the physics of shallow coastal seas, spatial dimension in the three dimensional way affects significantly on results of a particular numerical model. Therefore, the comparison of two and three dimensional models is important to understand the real physics of mixing and stratification in an estuary. Also, as Geyer and MacCready (2013) pointed out that the lateral process seems to be important in determining the periodic stratifications, to study such process the three dimensional modeling must be required. The present study uses a numerical model to show the signification roles of each term of the time-dependent dynamic equation for the potential energy anomaly (PEA) in controlling along and lateral channel flows and different stratification structures. Moreover, we present the relationships between the ${\Phi}$-advection, the depth mean straining, vertical mixing and vertical advection can explain well how water level, salinity distribution and across velocity 2D model are slightly different from 3D.

  • PDF

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng;Carman, Yeung;Tingyuan, Yin;Liujie, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.639-648
    • /
    • 2022
  • This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

Development and Application of Multiple Box Water Quality Model for Estuary Reservoirs (담수호 Multiple Box 수질모형의 개발과 적용)

  • 임종환;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.4
    • /
    • pp.111-122
    • /
    • 1989
  • A multiple box model which is suitable for the prediction of water quality in shallow lakes with active mixing is a water quality model expected to be used widely in estuary reservoir. In this study, a multiple box water quality model for estuary reservoirs (MBQER) was developed arid the applicability of the MBQER was tested by applying data obtained from Asan-estuary reservoir. The results of this study can be summarized as follows. 1. The MBQER, dynamic water quality model, was developed to estimate 10-day water qualities of estuary reservoirs. For the proper analysis and the application of hydraulics needed to build a model, lake hydraulics was simplified by condisering only hydrological inflow and lake mixing currents. The box division in the MBQER is longitudinal one dimension for upper and middle part, and two layers for lower part of the reservoir. 2. The methods of box division for the multiple box model were ekamined and applied to Asan-estuary reservoir. For determining the number of boxes, Pe number and Pk number were used. In case of three boxes, the error by the model simplification would be estimated about 5 % Therefore, in Asan reservoir, the proper number of boxes was three. 3. The MBQER was calibrated and verified using measured data in Asan-estuary reservoir from 1986 to 1988. The Root Mean Squares(RMS) for the differences between measured data and simulated results by the MBQER were 1.10$^{\circ}$C C for water temperature, 75.8mg/1 for salinity, 0.082mg/1 for total-phosphorus showing good estimations. 4. Through the simulation of water temperature and salinity by the MBQER, the exchange flow and the mixing coefficients for the estuary lake were determined. As a result of simulation, the horizontal mixing coefficients in Asan-estuary reservoir were in the range of 1.07X 105 to 1.12X 105 cm$^2$/sec and vertical mixing coefficient was 2.90X 10-1 cm$^2$/sec.

  • PDF

Study of Starting Pressure of a Supersonic Ejector with a Second-Throat (이차목을 갖는 초음속 이젝터 작동압력에 대한 연구)

  • Jin, Jung-Kun;Kwon, Se-Jin;Kim, Se-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.934-939
    • /
    • 2005
  • Starting pressure of a supersonic ejector with a second-throat was investigated. In case of mixing chamber length longer than a critical length, starting pressure is in proportion to length of the mixing chamber. In this study, we assumed that the ejector starts when the primary supersonic flow reaches inlet of the second-throat and the distance of the supersonic flow traveling can be expressed by multiplying an empirical factor to the first diamond shock length of overexpanded flow. To calculate the overexpanded supersonic flow, a mixing model was employed to compute secondary flow pressure and the result was applied to back pressure condition of overexpanded flow calculation. In the result, for three cases of primary nozzle area ratio, we could get accurate model of predicting the starting pressure by selecting a suitable empirical factors around 3.

A Study on the Calculation of Ternary Concrete Mixing using Bidirectional DNN Analysis (양방향 DNN 해석을 이용한 삼성분계 콘크리트의 배합 산정에 관한 연구)

  • Choi, Ju-Hee;Ko, Min-Sam;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.619-630
    • /
    • 2022
  • The concrete mix design and compressive strength evaluation are used as basic data for the durability of sustainable structures. However, the recent diversification of mixing factors has created difficulties in calculating the correct mixing factor or setting the reference value concrete mixing design. The purpose of this study is to design a predictive model of bidirectional analysis that calculates the mixing elements of ternary concrete using deep learning, one of the artificial intelligence techniques. For the DNN-based predictive model for calculating the concrete mixing factor, performance evaluation and comparison were performed using a total of 8 models with the number of layers and the number of hidden neurons as variables. The combination calculation result was output. As a result of the model's performance evaluation, an average error rate of about 1.423% for the concrete compressive strength factor was achieved. and an average MAPE error of 8.22% for the prediction of the ternary concrete mixing factor was satisfied. Through comparing the performance evaluation for each structure of the DNN model, the DNN5L-2048 model showed the highest performance for all compounding factors. Using the learned DNN model, the prediction of the ternary concrete formulation table with the required compressive strength of 30 and 50 MPa was carried out. The verification process through the expansion of the data set for learning and a comparison between the actual concrete mix table and the DNN model output concrete mix table is necessary.

Modeling of Turbulent Molecular Mixing by the PDF Balance Method for Turbulent Reactive Flows (난류연소 유동장에서의 확률밀도함수 전달방정식을 이용한 난류혼합 모델링)

  • Moon, Hee-Jang
    • Journal of the Korean Society of Combustion
    • /
    • v.2 no.1
    • /
    • pp.39-51
    • /
    • 1997
  • A review of probability density function(PDF) methodology and direct numerical simulation for the purpose of modeling turbulent combustion are presented in this study where particular attention is focused on the modeling problem of turbulent molecular mixing term appearing in PDF transport equation. Existing mixing models results were compared to those evaluated by direct numerical simulation in a turbulent premixed medium with finite rate chemistry in which the initial scalar field is composed of pockets of partially burnt gases to simulate autoignition. Two traditional mixing models, the least mean square estimations(LMSE) and Curl#s model are examined to see their prediction capability as well as their modeling approach. Test calculations report that the stochastically based Curl#s approach, though qualitatively demonstrates some unphysical behaviors, predicts scalar evolutions which are found to be in good agreement with statistical data of direct numerical simulation.

  • PDF

CFD Analysis for Thermal Mixing in a Subcooled Water during Steam Jet Discharge (증기제트 방출시 과냉각수조 내의 열혼합 현상 CFD 해석)

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.513-514
    • /
    • 2006
  • A CFD analysis for a thermal mixing experiment during steam jet discharge was performed to develop the analysis methodology for the thermal mixing between steam and subcooled water and to find the optimized numerical method. In the CFD analysis, the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. However, the commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behaviour reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted

  • PDF

Analyses of Ocean Discharges Municipal Water and its Near-Field Mixing Characteristics (도시 하수의 해양방류 및 근역혼합특성 분석)

  • 김강만;김지연;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.243-252
    • /
    • 1999
  • Recently several research groups using CORMIX, approved by EPA, have been working on the hydrodynamic mixing processes due to the ocean discharges. It provides a useful tool for analyzing near field mixing characteristics through the outfall system. This paper applies CORMIX 1 & 2 to the Pusan Jungang Effluent Outfall System, which is planned to be in the Gamchun harbour and will be completed in 2011. This model output shows the trajectoral variation of dilution and concentration for three cases of outfall system. Dilution differences have been simulated and found the highest dilution condition under the different displacement of outfall system. On the basis of these outputs it will be proposed the optimum outfall system type and location. This approach might contribute on protecting the serious water quality problem due to the ocean discharge.

Development of Sequential Mixing Model for Analysis of Shear Flow Dispersion (전단류 분산 해석을 위한 순차혼합모형의 개발)

  • Seo, Il Won;Son, Eun Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.335-344
    • /
    • 2006
  • In this study, sequential mixing model (SMM) was proposed based on the Taylor's theory which can be summarized as the fact that longitudinal advection and transverse diffusion occur independently and then the balance between the longitudinal shear and transverse mixing maintains. The numerical simulation of the model were performed for cases of different mixing time and transverse velocity distribution, and the results were compared with the solutions of 1-D longitudinal dispersion model (1-D LDM) and 2-D advection-dispersion model (2-D ADM). As a result it was confirmed that SMM embodies the Taylor's theory well. By the comparison between SMM and 2-D ADM, the relationship between the mixing time and the transverse diffusion coefficient was evaluated, and thus SMM can integrate 2-D ADM model as well as 1-D LDM model and be an explanatory model which can represents the shear flow dispersion in a visible way. In this study, the predicting equation of the longitudinal dispersion coefficient was developed by fitting the simulation results of SMM to the solution of 1-D LDM. The verification of the proposed equation was performed by the application to the 38 sets of field data. The proposed equation can predict the longitudinal dispersion coefficient within reliable accuracy, especially for the river with small width-to-depth ratio.