Browse > Article
http://dx.doi.org/10.12989/sss.2022.30.6.639

Stress evaluation of tubular structures using torsional guided wave mixing  

Ching-Tai, Ng (School of Civil, Environmental & Mining Engineering, The University of Adelaide)
Carman, Yeung (School of Civil, Environmental & Mining Engineering, The University of Adelaide)
Tingyuan, Yin (School of Civil, Environmental & Mining Engineering, The University of Adelaide)
Liujie, Chen (School of Civil Engineering, Guangzhou University)
Publication Information
Smart Structures and Systems / v.30, no.6, 2022 , pp. 639-648 More about this Journal
Abstract
This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.
Keywords
combinational harmonic; guided wave; second harmonic; torsional wave acoustoelastic effect; tubular structure; wave mixing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Zhang, L.H., Maizuar, M., Mendis, P., Duffield, C. and Thompson, R. (2016), "Monitoring the dynamic behaviour of concrete bridges using non-contact sensors (IBIS-S)", Appl. Mech. Mater., 846, 225-230. https://doi.org/10.4028/www.scientific.net/AMM.846.225     DOI
2 Allen, J.C.P. and Ng, C.T. (2022), "Debonding detection at adhesive joints using nonlinear Lamb waves mixing", NDT & E Int., 125, 102552. https://doi.org/10.1016/j.ndteint.2021.102552   DOI
3 Bartoli, I., Phillips, R., Coccia, S., Srivastava, A., di Scalea, F.L., Fateh, M. and Carr, G. (2010), "Stress dependence of ultrasonic guided waves in rails", Transp. Res. Rec., 2159(1), 91-97. https://doi.org/10.3141/2159-12   DOI
4 Biot, M.A. (1940), "The influence of initial stress on elastic waves", J. Appl. Phys., 11(8), 522-530. https://doi.org/10.1063/1.1712807   DOI
5 Cawley, P. and Alleyne, D. (1996), "The use of Lamb waves for the long range inspection of large structures", Ultrasonics, 34(2-5), 287-290. https://doi.org/10.1016/0041-624x(96)00024-8   DOI
6 Chaki, S. and Bourse, G. (2009), "Stress level measurement in prestressed steel strands using acoustoelastic effect", Exp. Mech., 49(5), 673-681. https://doi.org/10.1007/s11340-008-9174-9   DOI
7 Chen, J., Fang, H. and Chan, T.-M. (2021), "Design of fixed-ended octagonal shaped steel hollow sections in compression", Eng. Struct., 228, 111520. https://doi.org/10.1016/j.engstruct.2020.111520   DOI
8 Croxford, A.J., Wilcox, P.D., Drinkwater, B.W. and Nagy, P.B. (2009), "The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue", J. Acoust. Soc. Am., 126(5), EL117-EL122. https://doi.org/10.1121/1.3231451   DOI
9 Deng, M., Gao, G., Xiang, Y. and Li, M. (2017), "Assessment of accumulated damage in circular tubes using nonlinear circumferential guided wave approach: a feasibility study", Ultrasonics, 75, 209-215. https://doi.org/10.1016/j.ultras.2016.12.001   DOI
10 Dubuc, B., Ebrahimkhanlou, A. and Salamone, S. (2017), "Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes", Ultrasonics, 75, 145-154. https://doi.org/10.1016/j.ultras.2016.11.013   DOI
11 Hasanian, M. and Lissenden, C.J. (2018), "Second order ultrasonic guided wave mutual interactions in plate: Arbitrary angles, internal resonance, and finite interaction region", J. Appl. Phys., 124(16), 164904. https://doi.org/10.1063/1.5048227   DOI
12 Dubuc, B., Ebrahimkhanlou, A. and Salamone, S. (2020), "Stress monitoring of prestressing strands in corrosive environments using modulated higher-order guided ultrasonic waves", Struct. Health Monit., 19(1), 202-214. https://doi.org/10.1177/1475921719842385   DOI
13 Fang, H., Chan, T.-M. and Young, B. (2018), "Structural performance of cold-formed high strength steel tubular columns", Eng. Struct., 177, 473-488. https://doi.org/10.1016/j.engstruct.2018.09.082   DOI
14 Hasanian, M. and Lissenden, C.J. (2017), "Second order harmonic guided wave mutual interactions in plate: Vector analysis, numerical simulation, and experimental results", J. Appl. Phys., 122(8), 084901. https://doi.org/10.1063/1.4993924   DOI
15 Hirao, M., Fukuoka, H. and Hori, K. (1981), "Acoustoelastic effect of Rayleigh surface wave in isotropic material", J. Appl. Mech.-Transact. ASME, 48(1), 119-124. https://doi.org/10.1115/1.3157553   DOI
16 Hughes, J.M., Vidler, J., Ng, C.-T., Khanna, A., Mohabuth, M., Rose, L.F. and Kotousov, A. (2019), "Comparative evaluation of in situ stress monitoring with Rayleigh waves", Struct. Health Monit., 18(1), 205-215. https://doi.org/10.1177/1475921718798146   DOI
17 Kamyshev, A., Nikitina, N. and Smirnov, V. (2010), "Measurement of the residual stresses in the treads of railway wheels by the acoustoelasticity method", Russ. J. Nondestruct. Test., 46(3), 189-193. https://doi.org/10.1134/S106183091003006x   DOI
18 Li, Z., He, J., Teng, J., Huang, Q. and Wang, Y. (2019), "Absolute stress measurement of structural steel members with ultrasonic shear-wave spectral analysis method", Struct. Health Monit., 18(1), 216-231. https://doi.org/10.1177/1475921717746952   DOI
19 Li, G.-Y., He, Q., Mangan, R., Xu, G., Mo, C., Luo, J., Destrade, M. and Cao, Y. (2017), "Guided waves in pre-stressed hyperelastic plates and tubes: Application to the ultrasound elastography of thin-walled soft materials", J. Mech. Phys. Solids, 102, 67-79. https://doi.org/10.1016/j.jmps.2017.02.008   DOI
20 Li, F., Zhao, Y., Cao, P. and Hu, N. (2018), "Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity", Ultrasonics, 87, 33-43. https://doi.org/10.1016/j.ultras.2018.02.005   DOI
21 Liu, M., Tang, G., Jacobs, L.J. and Qu, J. (2012), "Measuring acoustic nonlinearity parameter using collinear wave mixing", J. Appl. Phys., 112(2), 024908. https://doi.org/10.1063/1.4739746   DOI
22 Liu, Y., Khajeh, E., Lissenden, C.J. and Rose, J.L. (2013), "Interaction of torsional and longitudinal guided waves in weakly nonlinear circular cylinders", J. Acoust. Soc. Am., 133(5), 2541-2553. https://doi.org/10.1121/1.4795806   DOI
23 Lovstad, A. and Cawley, P. (2011), "The reflection of the fundamental torsional guided wave from multiple circular holes in pipes", NDT & E Int., 44(7), 553-562. https://doi.org/10.1016/j.ndteint.2011.05.010   DOI
24 Lu, W., Peng, L. and Holland, S. (1998), Measurement of acoustoelastic effect of Rayleigh surface waves using laser ultrasonics in Review of Progress in Quantitative Nonestructive Evaluation, Springer, pp. 1643-1648.
25 McGovern, M., Buttlar, W. and Reis, H. (2014), "Characterisation of oxidative ageing in asphalt concrete using a non-collinear ultrasonic wave mixing approach", Insight: Non-Destr. Test. Cond. Monit., 56(7), 367-374. https://doi.org/10.1784/insi.2014.56.7.367   DOI
26 Nasim Khan Raja, B., Miramini, S., Duffield, C., Chen, S. and Zhang, L. (2021), "A Simplified Methodology for Condition Assessment of Bridge Bearings Using Vibration Based Structural Health Monitoring Techniques", Int. J. Struct. Stabil. Dyn., 21(10), 2150133. https://doi.org/https://doi.org/10.1142/S0219455421501339   DOI
27 McGovern, M., Buttlar, W. and Reis, H. (2015), "Estimation of oxidative ageing in asphalt concrete pavements using non collinear wave mixing of critically-refracted longitudinal waves", Insight: Non-Destr. Test. Cond. Monit., 57(1), 25-34. https://doi.org/10.1784/insi.2014.57.1.25   DOI
28 Mohabuth, M., Kotousov, A. and Ng, C.-T. (2016), "Effect of uniaxial stress on the propagation of higher-order Lamb wave modes", Int. J. Non-Linear Mech., 86, 104-111. https://doi.org/10.1016/j.ijnonlinmec.2016.08.006   DOI
29 Murnaghan, F.D. (1937), "Finite deformations of an elastic solid", Am. J. Math., 59(2), 235-260. https://doi.org/10.2307/2371405   DOI
30 Nikitina, N.Y., Kamyshev, A. and Kazachek, S. (2009), "Application of the acoustoelasticity phenomenon in studying stress states in technological pipelines", Russ. J. Nondestruct. Test., 45(12), 861-866. https://doi.org/10.1134/S1061830909120043   DOI
31 Ogden, R.W. (2007), Incremental statics and dynamics of prestressed elastic materials in Waves in nonlinear pre-stressed materials, Springer, pp. 1-26.
32 Pattanayak, R.K., Manogharan, P., Balasubramaniam, K. and Rajagopal, P. (2015), "Low frequency axisymmetric longitudinal guided waves in eccentric annular cylinders", J. Acoust. Soc. Am., 137(6), 3253-3262. https://doi.org/10.1121/1.4921269   DOI
33 Pau, A. and Lanza di Scalea, F. (2015), "Nonlinear guided wave propagation in prestressed plates", J. Acoust. Soc. Am., 137(3), 1529-1540. https://doi.org/10.1121/1.4908237   DOI
34 Sohn, H., Lim, H.J., DeSimio, M.P., Brown, K. and Derriso, M. (2014), "Nonlinear ultrasonic wave modulation for online fatigue crack detection", J. Sound Vib., 333(5), 1473-1484. https://doi.org/10.1016/j.jsv.2013.10.032   DOI
35 Shams, M., Destrade, M. and Ogden, R.W. (2011), "Initial stresses in elastic solids: constitutive laws and acoustoelasticity", Wave Motion, 48(7), 552-567. https://doi.org/10.1016/j.wavemoti.2011.04.004   DOI
36 Shan, S., Hasanian, M., Cho, H., Lissenden, C.J. and Cheng, L. (2019), "New nonlinear ultrasonic method for material characterization: Codirectional shear horizontal guided wave mixing in plate", Ultrasonics, 96, 64-74. https://doi.org/10.1016/j.ultras.2019.04.001   DOI
37 Smith, M. (2009), ABAQUS/Standard User's Manual, Version 6.9. [available online]
38 Yang, Y., Ng, C.-T. and Kotousov, A. (2018), "Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves", Smart Mater. Struct., 27(5), 055013. https://doi.org/10.1088/1361-665X/aab867   DOI
39 Yang, Y., Ng, C.-T. and Kotousov, A. (2019a), "Second-order harmonic generation of Lamb wave in prestressed plates", J. Sound Vib., 460, 114903. https://doi.org/10.1016/j.jsv.2019.114903   DOI
40 Yang, Y., Ng, C.T., Mohabuth, M. and Kotousov, A. (2019b), "Finite element prediction of acoustoelastic effect associated with Lamb wave propagation in pre-stressed plates", Smart Mater. Struct., 28(9), 095007. https://doi.org/10.1088/1361-665X/ab2dd3   DOI
41 Yeung, C. and Ng, C.T. (2019), "Time-domain spectral finite element method for analysis of torsional guided waves scattering and mode conversion by cracks in pipes", Mech. Syst. Signal Process., 128, 305-317. https://doi.org/10.1016/j.ymssp.2019.04.013   DOI
42 Yin, T., Ng, C.-T. and Kotousov, A. (2021), "Damage detection of ultra-high-performance fibre-reinforced concrete using a harmonic wave modulation technique", Constr. Build. Mater., 313, 125306. https://doi.org/10.1016/j.conbuildmat.2021.125306   DOI
43 Yeung, C. and Ng, C.T. (2020), "Nonlinear guided wave mixing in pipes for detection of material nonlinearity", J. Sound Vib., 485, 115541. https://doi.org/10.1016/j.jsv.2020.115541   DOI