• Title/Summary/Keyword: Mixer design

Search Result 296, Processing Time 0.025 seconds

Implement of Broadband Resistive Mixer for X-band FMCW Radar (X밴드 FMCW 레이더용 광대역 저항성 주파수 혼합기 구현)

  • Park, Dong-Kook;Han, Tae-Kyoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.970-974
    • /
    • 2007
  • A mixer is a key component in the wireless communication systems. In this paper, we design a mixer which is used in a frequency modulated continuous wave(FMCW) radar system. The frequency sweep range of the radar is from 10 GHz to 11 GHz. The transmitted and received signals of the FMCW radar are applied to LO and RF ports of the mixer, respectively, but the frequency difference between the two signals, which is called "a beat frequency" is under a few KHz and depending on the distance to target. Thus the isolation between the LO and RF ports is very important factor to design this mixer. In this paper we propose a single balanced resistive mixer using GaAs MESFET for this application. We first design a single-ended type resistive mixer using a simulation tool, then design a balanced type to increase the LO-to-RF isolation of the mixer. We fabricated the mixer on the substrate of dielectric constant 10 and thickness 0.635 mm. The measured results show that the isolation and conversion loss of the mixer over the frequency band is 20dB and 10.5dB, respectively. The LO input power for operating the proposed mixer is +3dBm, which is lower than a general conventional mixer's LO power. The 1 dB compression point is 6dBm.

A Design of Direct conversion method 2.45GHz Low-IF Mixer Using CMOS 0.18um Process (CMOS 0.18um 공정을 이용한 2.45GHz Low-IF 직접 변환 방식 혼합기 설계)

  • Choi, Jin-Kyu;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.414-417
    • /
    • 2008
  • This paper presents the design and analysis of 2.45GHz Low-IF Mixer using CMOS 0.18um. The Mixer is implemented by using the Gilbert-type configuration, current bleeding technique, and the resonating technique for the tail capacitance. And the design of this Double Balance Mixer is based on its lineaity since it is important in the interference cancellation system. The low flicker noise mixer is implemented by incorporating a double balanced Gilber-type configuration, the RF leakage-less current bleeding technique, and Cp resonating technique. The proposed mixer has a simulated conversion gain of 16dB a simulated IIP3 of -3.3dBm and P1dB is -19dBm. A simulated noise figure of 6.9dB at l0MHz and a flicker corner frequency of 510kHz while consuming only 10.65mW od DC power. The layout of Mixer for one-chip design in a 0.18-um TSMC process has 0.474mm$\times$0.39 mm size.

  • PDF

Design of a LNA-Mixer for 2.45GHz RFID Reader (2.45GHz 대역 RFID Reader 를 위한 LNA -Mixer 설계)

  • Lim, Tae-Seo;Ko, Jae-Hyeong;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.415-418
    • /
    • 2007
  • This paper presents the design and analysis of LNA-Mixer for 2.45GHz RFID reader. The LNA is implemented by PCSNIM method for low power consumption. The Mixer is implemented by using the Gilbert-type configuration, current bleeding technique, and the resonating technique for the tail capacitance. The connection between the two designed circuits is made by active balun. This LNA-Mixer has about 35dB for -40dBm input RF power, LO power is 0dBm and RF frequency is 2.45 GHz and IIP3 is -4dBm. The layout of LNA-Mixer for one-chip design in a $0.18-{\mu}m$ TSMC process has 2.6mm ${\times}$ 1.3mm size.

  • PDF

Design of Predistortive Mixer (전치 왜곡 혼합기 설계)

  • 정용채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.197-205
    • /
    • 2000
  • The back-off input power level method is generally used for design of high linear mixer. In this paper, the predistortive mixer design method which attaches the predistortor in front of mixer is proposed to compensate the nonlinear characteristics of mixer and the predistortor has inverse nonlinear characteristics of mixer. The proposed method improves C/I ratio of mixer by 22 dB (@Po=-20 dBm/tone), 21.7 dB(@Po=-17 dBm/tone) with two tones of RF at 1852.5MHz, 1857.5MHz and LO at 2015MHz, respectively.

  • PDF

Design of a LNA-Mixer with on-chip balun for 2.45GHz RFID Applications (On-chip 발룬을 포함한 2.45GHz대역 RFID용 LNA-Mixer설계)

  • Lim, Tae-Seo;Ko, Jae-Hyeong;Jung, Hyo-Bin;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1982-1987
    • /
    • 2007
  • This paper presents the design and analysis of LNA-Mixer for 2.45GHz RFID reader. The LNA is implemented by PCSNIM method for low power consumption. The Mixer is implemented by using the Gilbert-type configuration, current bleeding technique and the resonating technique for the tail capacitance. The connection between the two designed circuits is made by active balun. This LNA-Mixer has about 22dB gain and 8.5dB Noise Figure for -50dBm input RF power, LO power is 0dBm, RF frequency is 2.45 GHz and IF frequency is 100kHz. The layout of LNA-Mixer for one-chip design in a 0.18-um TSMC process has $2.5mm{\times}1.0mm$ size.

A Design on LNA/Down-Mixer for MB-OFDM m Using 0.18 μm CMOS (CMOS를 이용한 MB-OFDM UWB용 LNA/Down-Mixer 설계)

  • Park Bong-Hyuk;Lee Seung-Sik;Kim Jae-Young;Choi Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.139-143
    • /
    • 2005
  • In this paper, we propose the design on LNA and Down-mixer for MB-OFDM UWB using $0.18\;{\mu}m$ CMOS. LNA, Down-mixer design result shows that it covers the frequency range ken 3 GHz to 5 GHz. The LNA gain is larger than 12.8 dB, and noise figure about 2.6 dB. Double balanced differential down-mixer is designed less than 2 dB gainflatness, and it has over 30 dB LO leakage, feedthrough characteristics.

Development of a Tractor Attached TMR Mixer (I) - Design of a TMR mixer and its performance test (트랙터 견인형 TMR 배합기의 개발 (I) - TMR 배합기의 설계 및 성능시험)

  • Park, K. K.;Koo, Y. M.;Kim, H. J.;Seo, S. H.;Jang, C.;Lee, J. S.;Woo, J. K.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.203-212
    • /
    • 2000
  • One of the obstructing factors against managing large-scaled dairy farm in Korea has been heavy labor requirement for feeding dairy cows. A tractor attached TMR mixer was developed to reduce the cost and to provide economic benefit in this research. The TMR mixer was designed to have a feeding capacity of 35 heads at a batch with various functioning systems of paddle type mixer, cutter and grinder, delivery conveyor, weighing console, power transmission train, and mounting trailer. The maximum power required during the mixing operarion was 26.3 kw(P.T.O), readily available from 32kw-rated tractors, which had been widely used in Korea. Low coefficient of variation(14.0%) revealed an uniform mixing performance of the mixer. The mixer can also be used in compost mixing as well as concentrates and roughage.

  • PDF

The design of 85GHz-115Ghz band SIS mixer for the observing cosmic radio waves (85GHz-115Ghz 대 우주전파 관측용 초전도체 믹서 설계)

  • 한석태;김효령;이창훈;박종애;정현수;김광동;김태성;박동철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.90-98
    • /
    • 1996
  • We have evaluated the theoretical conversion loss and noise temperature of mixer using the quantum mixer theory and the method to determine the embedding impedance of waveguide-type mixer mount. At fixed backshort position of the mixer, the calculated SSB mixer conversion loss and mixer noise temperature are 5 dB and 10K within frequency range form 85 GHz to 115 GHz, respectively. The SIS mixer has been developed by using through on the calculated rsutls to observe cosmic radio waves. SIS junction of mixer is Nb/Al-AlOx/Nb and it consists of four series array. Area of each of junction is about 2.5${\mu}m^{2}$. The average receiver noise temperature of manufactured receiver with this mixer is about 30 K(DSB). The receiver noise temperature is much lower than that of receiver with a mixer using mechanical tuning backshort.

  • PDF

Approximate Optimization of an Active Micro-Mixer (능동형 미소혼합기의 근사최적화)

  • Park, Jae-Yong;Kim, Sang-Rak;Yoo, Jin-Sik;Lim, Min-Gyu;Kim, Young-Dae;Han, Seog-Young;Maeng, Joo-Seung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.95-100
    • /
    • 2008
  • An active micro-mixer, which is composed of an oscillating micro-stirrer in the micro-channel to provide effective mixing was optimized. The effects of molecular diffusion and disturbance by the stirrer were considered with regard to two types of mixer models: the simple straight micro-channel and micro-channel with an oscillating stirrer. Two types of mixer models were studied by analyzing mixing behaviors such as their interaction after the stirrer. The mixing was calculated by Lattice Boltzmann methods using the D2Q9 model. In this study, the time-averaged mixing index formula was used to estimate the mixing performance of time-dependent flow. The mixing indices of the two models were compared. From the results, it was found that the mixer with an oscillating stirrer was much more enhanced and stabilized. Therefore, an approximate optimization of an active micro-mixer with an oscillating stirrer was performed using Kriging method with OLHD(Optimal Latin Hypercube Design) in order to determine the optimal design variables. The design parameters were established as the frequency, the length and the angle of the stirrer. The optimal values were obtained as 1.0346, 0.66D and $\pm45^{\circ}$, respectively. It was found that the mixing index of the optimal design increased by 88.72% compared with that of the original design.

2.45GHz CMOS Up-conversion Mixer & LO Buffer Design

  • Park, Jin-Young;Lee, Sang-Gug;Hyun, Seok-Bong;Park, Kyung-Hwan;Park, Seong-Su
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.30-40
    • /
    • 2002
  • A 2.45GHz double-balanced modified Gilbert-type CMOS up-conversion mixer design is introduced, where the PMOS current-reuse bleeding technique is demonstrated to be efficient in improving conversion gain, linearity, and noise performance. An LO buffer is included in the mixer design to perform single-ended to differential conversion of the LO signal on chip. Simulation results of the design based on careful modeling of all active and passive components are examined to explain in detail about the characteristic improvement and degradation provided by the proposed design. Two kinds of chips were fabricated using a standard $0.35\mu\textrm$ CMOS process, one of which is the mixer chip without the LO buffer and the other is the one with it. The measured characteristics of the fabricated chips are quite excellent in terms of conversion gain, linearity, and noise, and they are in close match to the simulation results, which demonstrates the adequacy of the modeling approach based on the macro models for all the active and passive devices used in the design. Above all the benefits provided by the current-reuse bleeding technique, the improvement in noise performance seems most valuable.