• Title/Summary/Keyword: Mixed micellization

Search Result 29, Processing Time 0.029 seconds

Mixed Micellization of Anionic Ammonium Dodecyl Sulfate and

  • Gang, Gye Hong;Kim, Hong Un;Im, Gyeong Hui;Jeong, No Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1009-1014
    • /
    • 2001
  • In aqueous mixtures of cationic OTAC (octadecyl trimethyl ammonium chloride) and anionic ADS (ammonium dodecyl sulfate) surfactants, mixed micelles were formed at low (< 0.2 wt %) total surfactant concentrations. For these mixtures mixed micelliza tion and interaction of surfactant molecules were examined. Mixed critical micelle concentration (CMC), thermodynamic potentials of micellization, and minimum area per surfactant molecule at the interface were obtained from surface tensiometry and electrical conductometry. The mixed micellar compositions and the estimation of interacting forces were determined on the basis of a regular solution model. The CMCs were reduced, although not substantial, and synergistic behavior of the ADS and OTAC in the mixed micelles was observed. The CMC reductions in this anionic/cationic system were comparable to those in nonionic/anionic surfactant systems. The interaction parameter $\beta$ of the regular solution model was estimated to be -5 and this negative value of $\beta$ indicated an overall attractive force in the mixed state.

Experimental and theoretical investigation of micellization behavior of sodium dodecyl sulfate with cetyltrimethylammonium bromide in aqueous/urea solution at various temperatures

  • Hoque, Md. Anamul;Mahbub, Shamim;Rub, Malik Abdul;Rana, Shahed;Khan, Mohammed Abdullah
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2269-2282
    • /
    • 2018
  • Mixed micelle formation behavior of cationic surfactant-cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulfate (SDS) in aqueous as well as in urea medium from 303.15 K to 323.15 K at 5 K interval was carried out by conductometric method. The differences between the experimental values of critical micelle concentrations (cmc) and ideal critical micelle concentrations ($cmc^{id}$) illustrate the interaction between the amphiphiles studied. The values of micellar mole fraction ($X_1^{Rub}$ (Rubingh), $X_1^M$ (Motomura), $X_1^{Rod}$ (Rodenas) and $X_1^{id}$(ideal) of surfactant CTAB determined by different proposed models and outcome indicate high involvement of CTAB in SDS-CTAB mixed micellization, which enhance by means of the augment of mole fraction of CTAB. The negative value of interaction parameter (${\beta}$) showed an attractive interaction involving CTAB and SDS. Activity coefficients were less than unity in all case, which also reveals the presence of interaction between CTAB & SDS. The negative ${\Delta}G^0_m$ values imply the spontaneous mixed micellization phenomenon. The attained values of ${\Delta}H^0_m$ were positive at inferior temperature, while negative at superior temperature. The negative ${\Delta}H^0_m$ values in urea ($NH_2CONH_2$) medium illustrate exothermic micellization process. The magnitudes of ${\Delta}S^0_m$ were positive in almost all cases. The excess free energy of mixed micelle formation (${\Delta}G_{ex}$) was found to be negative, which indicates the stability of mixed micelle as compared to the individual's components micelles.

Turbidimetric and Nephelometric Studies on Aggrregation of Cationic-Anionic Surfactants$^\dag$

  • Park, Joon-Woo;Chung, Myung-Ae;Ahn, Byung-Tae;Lee, Hoo-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.6
    • /
    • pp.462-465
    • /
    • 1987
  • The aggregation between cationic and anionic surfactants was studied by turbidimetric and nephelometric methods with emphasis on facile analysis of the surfactants and understanding of the mixed micellization. The turbidimetric titration of sodium dodecylsulfate (SDS) with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium bromide (CPB) showed maximum turbidity at equimolar composition in the SDS concentration range of 0.1-0.9 mM. The nephelometric titration of the same systems extended the limit of analysis to 0.001 mM. The sodium salts of decylsulfate and sulfonate gave similar maxima, but not at equimolar composition. The coexistence of equimolar aggregates and mixed micelles were shown over broad composition range. The aggregation and mixed micellization of the anionic/cationic surfactants mixtures depended sensitively on the hydrophobic character of the surfactants.

Mixed Micellar Properties of Sodium n-Octanoate(SOC) with n-Octylammonium Chloride(OAC) in Aqueous Solution (Sodium n-Octanoate(SOC)와 n-Octylammonium Chloride(OAC)의 혼합마이셀화에 관한 연구)

  • Lee, Byeong Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.495-501
    • /
    • 2002
  • The critical micelle concentration(CMC) and the counterion binding constant(B) for the mixed micel-lization of sodium n-octanoate(SOC) with n-octylammonium chloride(OAC) were determined as a function of the overall mole fraction of $SOC({\alpha}_1).$ Various thermodynamic parameters($x_i$, $Y_i$, $C_i$, $${\alpha}_i^M$$, and $\Delta$$H_{mix}$) for the mixed micellization of the SOC/OAC systems have been calculated and analyzed by means of the equations derived from the nonideal mixed micellar model. The results show that there are great deviations from the ideal behavior for the mixed micellization of these systems. And other thermodynamic parameters(${\Delta}$$G^0_m$, ${\Delta}$$H^0_m$, and ${\Delta}$$S^0_m$) associated with the micellization of SOC,OAC, and their $mixture({\alpha}_1=0.5)$ have been also estimated from the temperature dependence of CMC and B values, and the significance of these parameters and their relation to the theory of the micelle formation have been considered and analyzed by comparing each other.

Effect of n-Butanol on the Mixed Micellization of DPC with CDEAB (DPC와 CDEAB의 혼합마이셀화에 미치는 n-부탄올의 효과)

  • Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.236-242
    • /
    • 2004
  • The critical micelle concentration (CMC) and the counterion binding constant (B) in a mixed micellar state of the Dodecylpyridinium chloride (DPC) with the Cetyldimethylethylammonium bromide (CDEAB) at 25$^{\circ}C$ in aqueous solutions of n-butanol were determined as a function of ${\alpha}_1$ (the overall mole fraction of DPC) by the use of electric conductivity method. Various thermodynamic parameters (($X_i,\;{\gamma}_i,\;C_i,\;a^M_i,\;{\beta},\;and {\Delta}H_{mix})$were calculated by means of the equations derived from the nonideal mixed micellar model. The effect of n-butanol on the mixed micellization of the DPC/CDEAB mixtures has been also studied by analyzing the measured and calculated thermodynamic parameters (CMC, B 및 $;{\Delta}G_o\;^m$).

Studies on Mixed Micellizations of Sodium Dodecanoate and Sodium Octanoate by Means of Electric Conductivity and Light Scattering (전기 전도도 및 광산란법에 의한 나트륨 도데카노에이트와 나트륨 옥타노에이트의 혼합미셀화 연구)

  • Park, Il Hyun;Jang, Han Woong;Baek, Seung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.4
    • /
    • pp.271-279
    • /
    • 2015
  • The critical micelle concentration (CMC), the counter ion binding constant (B) and the aggregation number (N* ) for the mixed micellization of sodium dodecanoate and sodium n-octanoate as two anionic surfactants have been investigated by means of electric conductivity and light scattering. As its experimental results are found to be deviated from ideal mixed model, thus two different kinds of regular solution models such as Rubingh and Motomura are used for interpreting our experimental data. The stability of the mixed micelles has been confirmed from the negative values of the standard Gibbs energy of mixed micellization ΔGmicel,0 over all compositions and the measured values of ΔGmicel,0 agreed with the theoretical ones within the experimental error.

Study on the micellization of cetyltrimethyl ammonium bromide in 4-biphenyl acetate solution (4-biphenyl acetate 수용액에서 Cetyltrimethyl Ammonium Bromide의 미셀화에 관한 연구)

  • Oh, Jung Hee
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.107-116
    • /
    • 1995
  • The critical micelle concentration(CMC) of CTAB was determined with changes in absorbance at 202nm band of 4-biphenyl acetate($BPA^-$). With $BPA^-$ as a probe, the effect of temperature on CMC of CTAB has been observed between $30^{\circ}C{\sim}70^{\circ}C$. In this range of temperature the values of CMC are $1.18{\times}10^{-4}{\sim}2.02{\times}10^{-4}M$. The free energy(${\Delta}G^{\circ}m$) and enthalpy(${\Delta}H^{\circ}m$)for the micellization of CTAB was negative and the entropy(${\Delta}S^{\circ}m$) was a large positive value. The micellization of CTAB is considered as a spontaneous process and to involve a phase transition. The orientational binding of 4-biphenyl acetate anion to the CTAB micelle interface has been studied with $300MHz\;H^1-NMR$ data. The change in chemical shift of proton in CTAB as well as those of the protons in $BPA^-$ have been investigated by increasing the mole fraction of the anion in the mixed solutions. The changes in chemical shift with increasing mole fraction of anion($BPA^-$) indicate the formation of mixed micelle between CTAB and $BPA^-$. The changes in chemical shifts of methylene protons in CTAB, demonstrate the penetration of $BPA^-$ into the palisade layer of the CTAB micelle.

  • PDF

Study on the Micellization of TTAB/Brij 35 Mixed Systems in Aqueous Solutions of n-Butanol (n-부탄올 수용액에서 TTAB/Brij 35 혼합계면활성제의 미셀화에 대한 연구)

  • Gil, Han-Nae;Lee, Byung-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.267-272
    • /
    • 2007
  • The critical micelle concentration (CMC) and the counterion binding constant (B) in a mixed micellar state of the trimethyltetradecylammonium bromide (TTAB) with the polyoxyethylene (23) lauryl ether (Brij 35) at $25^{\circ}C$ in water and in aqueous solutions of n-butanol (0.1 M, 0.2 M, and 0.3 M) were determined as a function of ${\alpha}_1$ (the overall mole fraction of TTAB) by the use of electric conductivity method and surface tensiometer method. Various thermodynamic parameters ($X_i$, ${\gamma}_i$, $C_i$, ${a_i}^M$, ${\beta}$, and ${\Delta}H_{mix}$) were calculated by means of the equations derived from the nonideal mixed micellar model. The effects of n-butanol on the micellization of TTAB/Brij 35 mixtures have been also studied by analyzing the measured and calculated thermodynamic parameters.

Effects of Butanol Isomers on the Mixed Micellization of TTAB/Brij 35 Mixed Surfactant Systems (TTAB/Brij 35 혼합계면활성제의 미셀화에 미치는 부탄올 이성질체들의 효과)

  • Gil, Han-Nae;Lee, Byung-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.2
    • /
    • pp.111-117
    • /
    • 2008
  • critical micelle concentration (CMC) and the counter ion binding constant (B) in a mixed micellar state of the trimethyltetradecylammonium bromide (TTAB) with the polyoxyethylene (23) lauryl ether (Brij 35) at 25oC in water and in aqueous solutions of butanol isomers were determined as a function of 1 (the overall mole fraction of TTAB) by the use of electric conductivity method and surface tensiometer method. Various thermodynamic parameters (Xi, i, Ci, aiM, and Hmix) were calculated by means of the equations derived from the nonideal mixed micellar model. The results say that the effects of butanol isomers on the micellization of TTAB/Brij 35 mixtures have been in the order of n-butanol>iso-butanol>t-butanol> water.