Browse > Article
http://dx.doi.org/10.1007/s11814-018-0120-y

Experimental and theoretical investigation of micellization behavior of sodium dodecyl sulfate with cetyltrimethylammonium bromide in aqueous/urea solution at various temperatures  

Hoque, Md. Anamul (Department of Chemistry, Jahangirnagar University)
Mahbub, Shamim (Department of Chemistry, Jahangirnagar University)
Rub, Malik Abdul (Chemistry Department, Faculty of Science, King Abdulaziz University)
Rana, Shahed (Department of Chemistry, Jahangirnagar University)
Khan, Mohammed Abdullah (Department of Chemistry, Jahangirnagar University)
Publication Information
Korean Journal of Chemical Engineering / v.35, no.11, 2018 , pp. 2269-2282 More about this Journal
Abstract
Mixed micelle formation behavior of cationic surfactant-cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulfate (SDS) in aqueous as well as in urea medium from 303.15 K to 323.15 K at 5 K interval was carried out by conductometric method. The differences between the experimental values of critical micelle concentrations (cmc) and ideal critical micelle concentrations ($cmc^{id}$) illustrate the interaction between the amphiphiles studied. The values of micellar mole fraction ($X_1^{Rub}$ (Rubingh), $X_1^M$ (Motomura), $X_1^{Rod}$ (Rodenas) and $X_1^{id}$(ideal) of surfactant CTAB determined by different proposed models and outcome indicate high involvement of CTAB in SDS-CTAB mixed micellization, which enhance by means of the augment of mole fraction of CTAB. The negative value of interaction parameter (${\beta}$) showed an attractive interaction involving CTAB and SDS. Activity coefficients were less than unity in all case, which also reveals the presence of interaction between CTAB & SDS. The negative ${\Delta}G^0_m$ values imply the spontaneous mixed micellization phenomenon. The attained values of ${\Delta}H^0_m$ were positive at inferior temperature, while negative at superior temperature. The negative ${\Delta}H^0_m$ values in urea ($NH_2CONH_2$) medium illustrate exothermic micellization process. The magnitudes of ${\Delta}S^0_m$ were positive in almost all cases. The excess free energy of mixed micelle formation (${\Delta}G_{ex}$) was found to be negative, which indicates the stability of mixed micelle as compared to the individual's components micelles.
Keywords
Sodium Dodecyl Sulfate (SDS); Mixed Micelle; Interaction Parameter; Activity Coefficient; Thermodynamic Parameter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Kumar, M. A. Rub, M. Akram and Kabir-ud-Din, Tenside Surf. Deterg., 51, 157 (2014).   DOI
2 F. Akhtar, M. A. Hoque and M. A. Khan, J. Chem. Thermodyn., 40, 1082 (2008).   DOI
3 M. Rahman, M. A. Khan, M. A. Rub and M. A. Hoque, J. Mol. Liq., 223, 716 (2016).   DOI
4 D. Kumar, M. A. Rub, M. Akram and Kabir-ud-Din, J. Colloid Interface Sci., 418, 324 (2014).   DOI
5 R. Jha and J. C. Ahluwalia, J. Chem. Soc. Faraday Trans., 89, 3465 (1993).   DOI
6 S. K. Han, S. M. Lee and H. Schott, J. Colloid Interface Sci., 126, 393 (1988).   DOI
7 G. C. Kresheck, Water: A comprehensive treatise, vol. 4, F. Franks (Ed.), Plenum, New York (1975).
8 K. Menguro, Y. Takasawa, N. Kawahashi, Y. Tabata and M. Ueno, J. Colloid Interface Sci., 83, 50 (1981).   DOI
9 C. C. Ruiz, Colloid Surf., A: Physicochem. Eng. Aspects, 147, 349 (1999).   DOI
10 Kabir-ud-Din, U. S. Siddique, S. Sanjeev and A. A. Dar, Colloid Polym. Sci., 384, 807 (2006).
11 C. C. Ruiz, L. Diaz-Lopez and J. Aguiar, J. Colloid Interface Sci., 305, 293 (2007).   DOI
12 C. Das and B. Das, J. Chem. Eng. Data, 54, 559 (2009).   DOI
13 S. Paria, Colloids Surf., A, 281, 113 (2006).   DOI
14 J. H. Clint, J. Chem. Soc., Faraday Trans. I, 71, 1327 (1975).   DOI
15 M. R. Molla, M. A. Rub, A. Ahmad and M. A. Hoque, J. Mol. Liq., 238, 62 (2017).   DOI
16 D. Kumar and M. A. Rub, J. Mol. Liq., 238, 389 (2017).   DOI
17 K. M. Kale, E. L. Cussler and D. F. Evans, J. Phys. Chem., 84, 593 (1980).   DOI
18 J. H. Fendler, Membrane mimetic chemistry, Wiley, New York (1982).
19 M. A. Rub, N. Azum and A. M. Asiri, Russian J. Phys. Chem. B, 10, 1007 (2016).   DOI
20 G.-H. Li and C.-G. Cho, Korean J. Chem. Eng., 25, 1444 (2008).   DOI
21 A. Bandhopadhyay and S. P. Moulik, Colloid Polym. Sci., 266, 455 (1988).   DOI
22 Y. Moroi, Micelles: Theoretical and applied aspects, Plenium Press, New York (1992).
23 M. A. Rub, A. M. Asiri, J. M. Khan, R. H. Khan and Kabir-ud-Din, J. Mol. Struct., 1050, 35 (2013).   DOI
24 V. Soldi, J. Keiper, L. S. Romsted, I. M. Cuccovia and H. Chaimovich, Langmuir, 16, 59 (2000).   DOI
25 R. Zana, J. Colloid Interface Sci., 78, 330 (1980).   DOI
26 N. Gorski and J. Kalus, Langmuir, 17, 4211 (2001).   DOI
27 D. N. Rubingh, Mixed micelle solution, K. L. Mittal (Ed.), Solution Chemistry of Surfactants, vol. 1, Plenum, New York (1979).
28 K. Motomura, M. Yamanaka and M. Aratono, Colloid Polym. Sci., 262, 948 (1984).   DOI
29 A. Buckingham, C. J. Garve and G. G. Warr, J. Phys. Chem., 97, 10236 (1993).   DOI
30 V. Rodenas, M. Valiente and M. S. Villafruela, J. Phys. Chem. B, 103, 4549 (1999).   DOI
31 H. Lange and K. H. Beck, Kolloid Z. Z. Polym., 251, 424 (1973).   DOI
32 N. M. van Os, B. Smit and S. Karaborni, Red. Trav. Chim. PaysBas, 113, 181 (1994).
33 M. A. Hoque, M.-O.-F. Patoary, M. M. Rashid, M. R. Molla and M. A. Rub, J. Solution Chem., 46, 682 (2017).   DOI
34 T. Joshi, B. Bharatiya and K. Kuperkar, J. Dispersion Sci. Technol., 29, 351 (2008).   DOI
35 Y. Moroi, J. Colloid Interface Sci., 122, 308 (1988).   DOI
36 S. E. Friberg, Food emulsions, vol. 5, Marcel Dekker, New York (1976).
37 S. Roy and J. Dey, J. Colloid Interface Sci., 290, 526 (2005).   DOI
38 W. G. Cutler and E. Kissa, Detergency: Theory and practice, Marcel Dekker, New York (1987).
39 J.-C. Kim, Korean J. Chem. Eng., 26, 1821 (2009).   DOI
40 M. J. Rosen, Surfactants and interfacial phenomena, 3rd Ed., Wiley, New York (2004).
41 D. Kumar and M. A. Rub, J. Mol. Liq., 240, 253 (2017).   DOI
42 M. A. Rub, N. Azum, F. Khan and A. M. Asiri, J. Chem. Thermodyn., 121, 199 (2018).   DOI
43 D. R. Robinson and W. P. Jencks, J. Am. Chem. Soc., 87, 2462 (1965).   DOI
44 D. B. Wetlaufer, S. K. Malik, L. Stoller and R. L. Coffin, J. Am. Chem. Soc., 86, 508 (1964).   DOI
45 O. Enea and C. Jolicoeur, J. Phys. Chem., 86, 3870 (1982).   DOI
46 A. Chakraborty, M. Sarkar and S. Basak, J. Colloid Interface Sci., 287, 312 (2005).   DOI
47 M. A. Rub, F. Khan, D. Kumar and A. M. Asiri, Tenside Surf. Deterg., 52, 236 (2015).   DOI
48 N. Azum, M. A. Rub, A. M. Asiri and W. A. Bawazeer, Colloids Surf., A, 522, 183 (2017).   DOI
49 N. Azum, M. A. Rub and A. M. Asiri, Chinese J. Chem. Eng., 26, 566 (2018).   DOI
50 M. A. Rub, N. Azum and A. M. Asiri, J. Mol. Liq., 218, 595 (2016).   DOI
51 C. Treiner and A. Makayssi, Langmuir, 8, 794 (1992).   DOI
52 D. Kumar, M. A. Rub, N. Azum and A. M. Asiri, J. Phys. Org. Chem., 31, e3730 (2018).   DOI
53 Z. H. Ren, Y. Luo and D. P. Shi, Colloids Surf., A, 428, 18 (2013).   DOI
54 A. Ali, S. Uzair, N. A. Malik and M. Ali, J. Mol. Liq., 196, 395 (2014).   DOI
55 J. J. H. Nusselder and J. B. F. N. Engberts, J. Colloid Interface Sci., 148, 353 (1992).   DOI
56 D. Kumar and M. A. Rub, Tenside Surf. Deterg., 52, 464 (2015).   DOI
57 Z. H. Ren, Y. Luo, Y. C. Zheng, D. P. Shi, P. Mei and F. S. Li, J. Solution Chem., 43, 853 (2014).   DOI
58 Z. H. Ren, J. Ind. Eng. Chem., 20, 3649 (2014).   DOI
59 J. H. Clint and T. J. Walker, J. Chem. Soc. Faraday Trans. I, 71, 946 (1975).   DOI
60 N. Azum, M. A. Rub and A. M. Asiri, J. Dispersion Sci. Technol., 38, 96 (2017).   DOI
61 M. A. Rub, N. Azum and A. M. Asiri, J. Chem. Eng. Data, 62, 3216 (2017).   DOI
62 C. Tanford, Proceedings of the National Academy of Science, 71, 1811 (1974).   DOI
63 N. Azum, M. A. Rub and A. M. Asiri, J. Dispersion Sci. Technol., 38, 1785 (2017).   DOI
64 M. A. Rub, N. Azum, A. M. Asiri, M. E. M. Zayed and A. O. AlYoubi, J. Phys. Org. Chem., 29, 476 (2016).   DOI
65 T. R. Desai and S. G. Dixit, J. Colloid Interface Sci., 177, 471 (1996).   DOI
66 M. A. Rub, N. Azum, F. Khan and A. M. Asiri, J. Phys. Org. Chem., 30, e3676 (2017).   DOI
67 N. Azum, M. A. Rub and A. M. Asiri, Colloids Surf., B, 121, 158 (2014).   DOI
68 P. K. Jana and S. P. Moulik, J. Phys. Chem., 95, 9525 (1991).   DOI
69 M. J. Roden, H. Zhu and T. Gao, J. Colloid Interface Sci., 157, 254 (1993).   DOI
70 J. H. Clint, Surfactant aggregation, Blackie\Chapman and Hall, Glasgow, New York (1992).
71 D. Attwood and A. T. Florence, Surfactant systems: Their chemistry, pharmacy and biology, Chapman & Hall, New York (1983).
72 M. E. Haque, A. R. Das, A. K. Rakshit and S. P. Moulik, Langmuir, 12, 4084 (1996).   DOI
73 J. L. Palous, M. Turmine and P. Letellier, J. Phys. Chem. B, 102, 5886 (1998).
74 M. J. Rosen and D. Murphy, J. Colloid Interface Sci., 110, 224 (1986).   DOI
75 P. H. Elworthy, A. T. Florence and G. B. Macfarlane, Solubilization by surface-active agents and its application in chemistry and biological sciences, Chapman and Hall, Suffolk (1968).
76 M. A. Rub, N. Azum, S. B. Khan, H. M. Marwani and A. M. Asiri, J. Mol. Liq., 212, 532 (2015).   DOI
77 M. A. Motin, M. A. H. Mia and A. K. M. N. Islam, J. Saudi Chem. Soc., 19, 172 (2015).   DOI
78 T. P. Niraula, S. K. Shah, S. K. Chatterjee and A. Bhattarai, Karbala Int. J. Modern Sci., 4, 26 (2018).   DOI