Browse > Article
http://dx.doi.org/10.5012/jkcs.2015.59.4.271

Studies on Mixed Micellizations of Sodium Dodecanoate and Sodium Octanoate by Means of Electric Conductivity and Light Scattering  

Park, Il Hyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology.)
Jang, Han Woong (Department of Polymer Science and Engineering, Kumoh National Institute of Technology.)
Baek, Seung Hwan (Department of Polymer Science and Engineering, Kumoh National Institute of Technology.)
Publication Information
Abstract
The critical micelle concentration (CMC), the counter ion binding constant (B) and the aggregation number (N* ) for the mixed micellization of sodium dodecanoate and sodium n-octanoate as two anionic surfactants have been investigated by means of electric conductivity and light scattering. As its experimental results are found to be deviated from ideal mixed model, thus two different kinds of regular solution models such as Rubingh and Motomura are used for interpreting our experimental data. The stability of the mixed micelles has been confirmed from the negative values of the standard Gibbs energy of mixed micellization ΔGmicel,0 over all compositions and the measured values of ΔGmicel,0 agreed with the theoretical ones within the experimental error.
Keywords
Mixed surfactant; Critical micelle concentration; Rubingh model; Light scattering; Aggregation number;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Rosen, M. J. Prog. Colloid Polym. Sci. 1994, 95, 39.   DOI
2 Schulz, P. C.; Rodriguez, J. L.; Minardi, R. M.; Sierra, M. B.; Morini, M. A. J. Colloid Interface Sci. 2006, 303, 264.   DOI
3 Berr, S. S.; Jones, R. R. M. J. Phys. Chem. 1989, 93, 2555.   DOI
4 Gruen, D. W. J. Phys. Chem. 1985, 89, 146.   DOI
5 Tanford, C. J. Phys. Chem. 1974, 78, 2469.   DOI
6 Shanks, P.C.; Franses, E. I. J. Phys. Chem. 1992, 96, 1794.   DOI
7 Puvvada, S.; Blankschtein, D. J. J. Phys. Chem. 1992, 96, 5567.   DOI
8 Puvvada, S.; Blankschtein, D. J. J. Phys. Chem. 1992, 96, 5579.   DOI
9 Park, I. J.; Lee, B. H. J. Korea Chem. Soc. 2009, 53, 491.   DOI
10 Park, I. J.; Lee, B. H. J. Korea Chem. Soc. 2011, 55, 379.   DOI
11 Lee, N. M.; Lee, B. H. J. Korea Chem. Soc. 2012, 56, 556.   DOI
12 Campbell, A. N.; Lakshminarayanan, G. R. Can. J. Chem, 1965, 43, 1729.   DOI
13 Zemb, T.; Drifford, M.; Hayoun, M.; Jehanno, A. J. Phy. Chem. 1983, 87, 4524.   DOI
14 Medoš, Ž.; Bešter-Rogač, M. J. Chem. Thermodynamics 2015, 83, 117.   DOI
15 de Moura, A. F.; Freitas, L. C. G. Chem. Phy. Lett. 2005, 411, 474.   DOI
16 Shelly, J.; Watanabe, K.; Klein, M. L. Electrochim. Acta 1991, 36, 1729.   DOI
17 Laaksonen, L.; Rosenholm, J. B. Chem. Phy. Lett. 1993, 216, 429.   DOI
18 Tummino, P. J.; Gafni, A. Biophys. J. 1993, 64, 1580.   DOI
19 Martinez-Landeria, P.; Prieto, G.; Ruso, J. M.; Sarmiento, F. Colloids Surf. A 2002, 203, 67.   DOI
20 Motomura, K.; Yamanaka, M.; Aratono, M. Colloid Polym. Sci. 1984, 262, 948.   DOI
21 Huglin M. B. Light Scattering from Polymer Solutions; Academic Press: New York, 1972.
22 Blanco, E.; Gonzalez-Perez, A.; Ruso, J. M.; Perido, R.; Prieto, G.; Sarmiento, F.; J. Colloid Interface Sci. 2005, 288, 247.   DOI
23 Holland, P. M.; Rubingh, D. N. J. Phys. Chem. 1983, 87, 1984.   DOI
24 Holland, P. M.; Rubingh, D. N. Mixed Surfactant Systems(ACS Symposium Series 501); ACS: Washington, DC, 1992.
25 Abe, M.; Scamehorn, J. F. Mixed Surfactant Systems; CRC Press: New York, 2004.
26 Scamehorn, J. F. Phenomena in Mixed Surfactant Systems(ACS Symposium Series 311); ACS: Washington, DC, 1985.
27 Yoshikawa, H. Adv. Drug Delivery Rev. 1997, 28, 239.   DOI
28 Morigaki, K.; Walde, P. Curr. Opin. Colloid Interface Sci. 2007, 12, 75.   DOI
29 Junquera, E.; Aicart, E. Langmuir 2002, 18, 9250.   DOI
30 Rodriguez-Pulido, A.; Casado, A.; Munoz-Ubeda, M.; Junquera, E.; Aicart, E. Langmuir 2010, 26, 9378.   DOI
31 Park, I. J.; Lee, B. H. J. Korea Chem. Soc. 2006, 50, 190.   DOI
32 Lee, B. H. J. Kor. Chem. Soc. 2002, 46, 495.   DOI