• Title/Summary/Keyword: Mixed cathode

Search Result 124, Processing Time 0.033 seconds

Study on Composite Cathode for YSZ Electrolyte in SOFC (SOFC의 YSZ 전해질에 대한 혼합공기극 연구)

  • Lee, Chang-Bo;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.1 s.256
    • /
    • pp.62-67
    • /
    • 2007
  • Optimization of cathode properties for intermediate temperature-operating SOFC (IT-SOFC) is carried out by using composite-type electrode structure in this study. Composite cathode may lower cathode overpotential by enhancing mixed ionic-electronic conductivity. In this study, particularly, LSM/YSZ, LSF/YSZ, LSCF/CGO, and PSC/CGO were selected as cathode materials. LSM/YSZ composite cathode showed the best performance of about 0.9${\Omega}cm^2$ at $700^{\circ}C$. It is inferred that the resistance is mainly affected by the reactivity between cathode and electrolyte which can cause the formation of resistive phases. Area specific resistance (ASR) characteristics were not changed significantly with decreasing sintering temperature of cathode, because reaction sites were increased even with worse adhesion of cathode on electrolytes.

A Study on Electrochemical Characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 Mixed Cathode for Li Secondary Battery (리튬2차전지용 LiCoO2/LiNi1/3Mn1/3Co1/3O2계 복합정극의 전기화학적 특성 연구)

  • Kim Hyun-Soo;Kim Sung-Il;Eom Seung-Wook;Kim Woo-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.64-70
    • /
    • 2006
  • In this study, the $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the content of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ increased in a mixed cathode, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability was deteriorated. On the contrary the rate capability of the cathode enhanced, but the reversible specific capacity and cycleability were deteriorated, increasing the content of $LiCoO_2$ in the mixed cathode. The cell of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ ($50:50 wt\%$) mixed cathode delivered a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell showed very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.

Electrochemical Evaluation of Mixed Ionic and Electronic Conductor-Proton Conducting Oxide Composite Cathode for Protonic Ceramic Fuel Cells (혼합 이온 및 전자 전도체-프로톤 전도성 전해질 복합 공기극을 적용한 프로토닉 세라믹 연료전지의 전기화학적 성능 평가)

  • HYEONGSIK SHIN;JINWOO LEE;SIHYUK CHOI
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.1
    • /
    • pp.48-55
    • /
    • 2024
  • The electrochemically active site of mixed ionic and electronic conductor (MIEC) as a cathode material is restricted to the triple phase boundary in protonic ceramic fuel cells (PCFCs) due to the insufficient of proton-conducting properties of MIEC. This study primarily focused on expanding the electrochemically active site by La0.6Sr0.4Co0.2Fe0.8O3-δ(LSCF6428)-BaZr0.4Ce0.4Y0.1Yb0.1O3-δ (BZCYYb4411) composite cathode. The electrochemical properties of the composite cathode were evaluated using anode-supported PCFC single cells. In comparison to the LSCF6428 cathode, the peak power density of the LSCF6428-BZCYYb4411 composite cathode is much enhanced by the reduction in both ohmic and non-ohmic resistance, possibly due to the increased electrochemically active site.

Electrochemical Performance of the Solid Oxide Fuel Cell with Different Thicknesses of BSCF-based Cathode (BSCF계 혼합전도성 공기극의 두께에 따른 고체산화물 연료전지의 전기화학적 특성)

  • Jeong, Jaewon;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 2013
  • In order to reduce the costs and to improve the durability of solid oxide fuel cell (SOFC), the operating temperature should be decreased while the power density is maintained as much as possible. However, lowering the operating temperature increases the cathode interfacial polarization resistances dramatically, limiting the performance of low-temperature SOFC at especially purely electronic conducting cathode. To improve cathode performance at low temperature, the number of reaction sites for the oxygen reduction should be increased by using a mixed ionic and electronic conducting (MIEC) material. In this study, anode-supported fuel cells with two different thicknesses of the MIEC cathode were fabricated and tested at various operating temperatures. The anode supported cell with $32.5{\mu}m$-thick BSCFZn-LSCF cathode layer showed much lower polarization resistance than that with $3.2{\mu}m$ thick cahtode and higher power density especially at low temperature. The effects of cathode layer thickness on the electrochemical performance are discussed with analysis of impedance spectra.

Cathode Microstructure Control and Performance Improvement for Low Temperature Solid Oxide Fuel Cells (저온 고체산화물 연료전지용 공기극 미세구조 제어 및 성능개선)

  • Kang, Jung-Koo;Kim, Jin-Soo;Yoon, Sung-Pil
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.727-732
    • /
    • 2007
  • In order to fabricate a highly performing cathode for low-temperature type solid oxide fuel cells working at below $700^{\circ}C$, electrode microstructure control and electrode polarization measurement were performed with an electronic conductor, $La_{0.8}Sr_{0.2}MnO_3$ (LSM) and a mixed conductor, $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$(LSCF). For both cathode materials, when $Sm_{0.2}Ce_{0.8}O_2$ (SDC) buffer layer was formed between the cathode and yttria-stabilized zirconia (YSZ) electrolyte, interfacial reaction products were effectively prevented at the high temperature of cathode sintering and the electrode polarization was also reduced. Moreover, cathode polarization was greatly reduced by applying the SDC sol-gel coating on the cathode pore surface, which can increase triple phase boundary from the electrolyte interface to the electrode surface. For the LSCF cathode with the SDC buffer layer and modified by the SDC sol-gel coating on the cathode pore surface, the cathode resistance was as low as 0.11 ${\Omega}{\cdot}cm^2$ measured at $700^{\circ}C$ in air atmosphere.

Electrical Properties in GDC (Gd2O3-Doped CeO2)/LSCF (La0.6Sr0.4Co0.2Fe0.8O3) Cathode Composites for Intermediate Temperature Solid Oxide Fuel Cells

  • Lee, Hong-Kyeong;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.110-115
    • /
    • 2011
  • $Gd_2O_3$-doped $CeO_2$ (GDC) and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ (LSCF) composite cathode materials were prepared in order to be applied to intermediate-temperature solid oxide fuel cells. The electrochemical polarization was evaluated using ac impedance spectroscopy involving geometric restriction at the interface between an ionic electrolyte and a mixed-conducting cathode. In order to optimize the cathode composites applicable to a GDC electrolyte, the cathode composites were evaluated in terms of polarization losses with regard to a given electrolyte, i.e., GDC electrolyte. The polarization increased significantly with decreasing temperature and was critically dependent on the compositions of the composite cathodes. The optimized cathode composite was found to consist of GDC 50 wt% and LSCF 50 wt%; the corresponding normalized polarization loss was calculated to be 0.64 at $650^{\circ}C$.

Electrochemical Properties and Thermal Stability of LiNi0.8Co0.15 Al0.05O2-LiFePO4 Mixed Cathode Materials for Lithium Secondary Batteries

  • Kim, Hyun-Ju;Jin, Bong-Soo;Doh, Chil-Hoon;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.63-67
    • /
    • 2012
  • We prepared various $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-cathode electrodes by changing the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ and $LiFePO_4$ used, and we analyzed the electrochemical characteristics of the cathodes. We found that the reversible specific capacity of the cathodes increased and that the capacity retention ratios of the cathodes decreased during cycling as the content of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ increased. Conversely, we found that although the reversible specific capacity of the cathodes decreased because of the material composition, the cycle property of the cathodes increased when the $LiFePO_4$ content increased. We analyzed the thermal stability of the $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2-LiFePO_4$ mixed-material cathodes by differential scanning calorimetry and found that it increased as the $LiFePO_4$ content increased.

Cathode Properties of Sm-Sr-(Co,Fe,Ni)-O System with Perovskite and Spinel Structures for Solid Oxide Fuel Cell (고체산화물 연료전지의 페로브스카이트와 스피넬 구조를 갖는 Sm-Sr-(Co,Fe,Ni)-O 시스템의 공기극 특성)

  • Baek, Seung-Wook;Kim, Jung-Hyun;Baek, Seung-Whan;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.133-136
    • /
    • 2007
  • Perovskite-structured samarium strontium cobaltite (SSC), which is mixed ionic electronic conductor (MIEC), is considered as a promising cathode material for intermediate temperature-operating solid oxide fuel cell (SOFC) due to its high electrocatalytic property. Cathode material containing cobalt (Co) is unstable at high temperature and has a relatively high thermal expansion property. In this paper, Sm-Sr-(Co,Fe,Ni)-O system with perovskite and spinel structures was investigated in terms of electrochemical property and thermal expansion property, respectively. Area specific resistance (ASR) was measured by ac impedance spectroscopy to investigate the electrochemical property of cathode, and thermal expansion coefficient (TEC) was measured by using dilatometer. Micro structure of cathode was observed by scanning electron microscopy. Perovskite-structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ showed the ASR of $0.87{\Omega}/cm^{2}$, and $Sm_{0.5}Sr_{0.5}NiO_{3-\delta}$, which actually has a spinel structure, showed the lowest TEC value of $13.3{\times}10^{-6}/K$.

  • PDF

Electrochemical Properties of $LiFePO_4-LiCoO_2$ Cathode Materials in Lithium Secondary Batteries (리튬이차전지 정극활물질용 $LiFePO_4-LiCoO_2$의 전기화학적 특성)

  • Kong, Ming-Zhe;Kim, Hyun-Soo;Kim, Ke-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.241-242
    • /
    • 2006
  • In this work, the $LiFePO_4-LiCoO_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in different current density. The cell of $LiFePO_4-LiCoO_2$ observed two voltage plateau regions at 3.4 and 3.9V. The cell of $LiFePO_4-LiCoO_2$ (90:10 wt%) mixed cathode delivered a discharge capacity of ca. 139.8 mAh/g at a 0.2C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca 85.7mAh/g was obtained at a 2C rate.

  • PDF

Electrochemical Properties of Acetylene Black/Multi-walled Carbon Nanotube Cathodes for Lithium Thionyl Chloride Batteries at High Discharge Currents

  • Song, Hee-Youb;Jung, Moon-Hyung;Jeong, Soon-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.430-436
    • /
    • 2020
  • Lithium thionyl chloride (Li/SOCl2) batteries exhibit the highest energy densities seen in commercially available primary batteries because of their high operating voltages and discharge capacities. They are widely used in various extreme environments; however, they show signs of degradation at high discharge currents. The discharge performance of Li/SOCl2 is considered to be greatly dependent on the carbon materials used in the cathode. Therefore, suitable carbon materials must be chosen to improve discharge performances. In this work, we investigated the discharge properties of Li/SOCl2 batteries in which the cathodes contained various ratios of acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) at high discharge currents. It was confirmed that the MWCNTs were effectively dispersed in the mixed AB/MWCNT cathodes. Moreover, the discharge capacity and operating voltage improved at high discharge currents in these mixed cathodes when compared with pure AB cathodes. It was found that the mesopores present in the cathodes have a strong impact on the discharge capacity, while the macropores present on the cathode surface influence the discharge properties at high discharge rates in Li/SOCl2 batteries. These results indicate that the ratio of mesopores and macropores in the cathode is key to improving the discharge performance of Li/SOCl2 batteries, as is the dispersion of the MWCNTs.