• Title/Summary/Keyword: Mixed analytical/numerical method

Search Result 27, Processing Time 0.025 seconds

Calculation of Mixed Lubrication at Piston Ring and Cylinder Liner Interface

  • Cho, Myung-Rae;Park, Jae-Kwon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.859-865
    • /
    • 2001
  • This paper reports on the theoretical analysis of mixed lubrication for the piston ring. The analytical model is presented by using the average flow and asperity contact model. The cyclic variations of the nominal minimum oil film thickness are obtained by numerical iterative method. The total friction is calculated by using the hydrodynamic and asperity contact theory. The effect of the roughness height, pattern, and engine speed on the nominal minimum film thickness, friction force, ad frictional power losses are investigated. As the roughness height increases, the nominal oil film thickness and total friction force increase. Also, the effect of the surface roughness on the boundary friction is dominant at low engine speed and high asperity height. The longitudinal roughness pattern shows lower mean oil film pressure and thinner oil film thickness compared to the case of the isotropic and transverse roughness patterns.

  • PDF

Numerical analysis of beams with damping subjected to dynamic loading

  • A.A. Mosallaie Barzoki;M. Saadantia;Hamed Karami
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.91-96
    • /
    • 2023
  • In this article, the vibration response of elastic nanocomposite beams with enhanced damping by nanoparticles is presented based on the mathematical model. Damp construction is considered by spring and damper elements based on the Kelvin model. Exponential shear deformation beam theory (ESDBT) has been used to model the structure. The mixed model model is used to obtain the effective properties of the structure including compaction effects. Using the energy method and Hamilton's principle, the equations of motion are calculated. The beam frequency is obtained by analytical method. The purpose of this work is to investigate the effect of volume percentage of nanoparticles and density, length and thickness of the beam on the frequency of the structure. The results show that the frequency increases with the increase in volume percentage of nanoparticles.

Parametric Modelling of Uncoupled System (언커플시스템의 파라메트릭 모델링)

  • Yoon, Moon-Chul;Kim, Jong-Do;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.36-42
    • /
    • 2006
  • The analytical realization of uncoupled system was introduced in this study using times series and its spectrum analysis. The ARMAX spectra of time series methods were compared with the conventional FFT spectrum. Also, the response of second order system uncoupled was solved using the Runge-Kutta Gill method. In this numerical analysis, the displacement, velocity and acceleration were calculated. The displacement response among them was used for the power spectrum analysis. The ARMAX algorithm in time series was proved to be appropriate for the mode estimation and spectrum analysis. Using the separate response of first and second mode, each modes were calculated separately and the response of mixed modes was also analyzed for the mode estimation using several time series methods.

  • PDF

Solution to Elasticity Problems of Structural Elements of Composite Materials (복합재료 구조 요소의 탄성문제에 대한 해)

  • Afsar, A.M.;Huq, N.M.L.;Mirza, F.A.;Song, J.I.
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.19-30
    • /
    • 2010
  • The present study describes a method for analytical solution to elastic field in structural elements of general symmetric laminated composite materials. The two dimensional plane stress elasticity problems under mixed boundary conditions are reduced to the solution of a single fourth order partial differential equation, expressed in terms of a single unknown function, called displacement potential function. In addition, all the components of stress and displacement are expressed in terms of the same displacement potential function, which makes the method suitable for any boundary conditions. The method is applied to obtain analytical solutions to two particular problems of structural elements consisting of an angle-ply laminate and a cross-ply laminate, respectively. Some numerical results are presented for both the problems with reference to the glass/epoxy composite. The results are highly accurate and reliable as all the boundary conditions including those in the critical regions of supports and loads are satisfied exactly. This verifies the method as a simple and reliable one as well as capable to obtain exact analytical solution to elastic field in structural elements of composite materials under mixed and any other boundary conditions.

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

Development of a Numerical Method for Effective Elastic Analysis of Unbounded Solids with Anisotropic Inclusions (이방성 함유체가 포함된 무한고체의 효과적인 탄성해석을 위한 수치해석 방법 개발)

  • 최성준;이정기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.41-52
    • /
    • 1998
  • A volume integral equation method and a mixed volume and boundary integral equation method are presented for the solution of plane elastostatic problems in solids containing orthotropic inclusions and voids. The detailed analysis of the displacement and stress fields are developed for orthotropic cylindrical and elliptic-cylindrical inclusions and voids. The accuracy and effectiveness of the new methods are examined through comparison with results obtained from analytical and boundary integral equation methods. Through the analysis of plane elastostatic problems in unbounded isotropic matrix containing orthotropic inclusions and voids, it is established that these new methods are very accurate and effective for solving plane elastostatic and elastodynamic problems in unbounded solids containing general anisotropic inclusions and voids or cracks.

  • PDF

Study on the 3 dimensional numerical analysis method for shield TBM tunnel considering key factors (주요 영향요소를 고려한 쉴드TBM 터널 3차원 수치해석기법 연구)

  • Jun, Gy-chan;Kim, Dong-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.513-525
    • /
    • 2018
  • A 3 dimensional numerical analysis for shield TBM tunnel should take into account various characteristics of the shield TBM excavation, such as gap, tail void, segment installation, and backfill injection. However, analysis method considering excavation characteristics are generally mixed with various method, resulting in concern of consistency and reliability degradation of the analytical results. In this paper, a parametric study is carried out by using actually measured ground settlement data on various methods that can be used for 3 dimensional numerical analysis of shield TBM tunneling. As a result, we have analyzed and arranged an analytical method to predict similarly the behavior of ground settlement and tunnel face pressure at the design stage. Skin plate pressure, backfill pressure and soil model have been identified as the most significant influences on the ground settlement. The grout pressure model is considered to be applicable when there is no volume loss information on the excavated ground, such as seabed tunnels, or when it is important to identify the behavior around a tunnel, such as surface settlement as well as face pressure. And it is considered that designers can use these guidelines as a base material to perform a reasonable 3 dimensional numerical analysis that reflects the ground conditions and the features of the shield TBM tunneling.

Development and Application of Two-Dimensional Numerical Tank using Desingularized Indirect Boundary Integral Equation Method (비특이화 간접경계적분방정식방법을 이용한 2차원 수치수조 개발 및 적용)

  • Oh, Seunghoon;Cho, Seok-kyu;Jung, Dongho;Sung, Hong Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.447-457
    • /
    • 2018
  • In this study, a two-dimensional fully nonlinear transient wave numerical tank was developed using a desingularized indirect boundary integral equation method. The desingularized indirect boundary integral equation method is simpler and faster than the conventional boundary element method because special treatment is not required to compute the boundary integral. Numerical simulations were carried out in the time domain using the fourth order Runge-Kutta method. A mixed Eulerian-Lagrangian approach was adapted to reconstruct the free surface at each time step. A numerical damping zone was used to minimize the reflective wave in the downstream region. The interpolating method of a Gaussian radial basis function-type artificial neural network was used to calculate the gradient of the free surface elevation without element connectivity. The desingularized indirect boundary integral equation using an isolated point source and radial basis function has no need for information about the element connectivity and is a meshless method that is numerically more flexible. In order to validate the accuracy of the numerical wave tank based on the desingularized indirect boundary integral equation method and meshless technique, several numerical simulations were carried out. First, a comparison with numerical results according to the type of desingularized source was carried out and confirmed that continuous line sources can be replaced by simply isolated sources. In addition, a propagation simulation of a $2^{nd}$-order Stokes wave was carried out and compared with an analytical solution. Finally, simulations of propagating waves in shallow water and propagating waves over a submerged bar were also carried and compared with published data.

A Study on the Behaviors of Several Layers in a Solar Pond (태양연못안의 각 층의 거동에 관한 연구)

  • 박희용;임경빈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.304-313
    • /
    • 1987
  • The behaviors of layers developed in a solar pond were studied by experimental and analytical methods. An experimental solar pond heated from below was constructed and operated at the net heat fluxes of 110 and 160W/m$^{2}$ and at the initial salt concentration gradients of 18.2, 27.3 and 36.4%/m. The thicknesses, growth rates, temperature and salt concentration in the top and the bottom mixed layers, the diffusive layer and the upper and the lower interfacial boundary layers were measured. The shadowgraph technique was used in order to observe all layer formation and an electroconductivity-temperature probe consisting of four electrodes was fabricated and used in measuring the salt concentration. Based on the experimental results, a model for the solar pond was developed and the governing equation and the assumptions were established. The governing equations were solved by the numerical method. The calculated results obtained from the analysis were compared with the experimental results.

Determination of Energy Release Rate of Penny-shaped Interface Crack on Bimaterial Cylinder (동전모양 균열이 존재하는 이상복합체의 에너지해방율 산정)

  • 양성철;서영찬;박종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.389-398
    • /
    • 2002
  • The mixed mode problem (I and II) of a peny-shaped interface cracks in remote tension loading on a bi-material cylinder is studied using finite element method. The energy release rates for the tip of the crack in the interface were calibrated for several different moduli combinations and crack ratios using the modified crack closure integral technique and J-integral method, with numerical results obtained from a commercial finite element program. Numerical results show that non-dimensional value of$\sqrt{G_{II}E^*}/\sqrt[p]{\pi a}$ increases as the crack size or moduli ratio increases. Meanwhile, non-dimensional value of$\sqrt{G_{I}E^*}/\sqrt[p]{\pi a}$ decreases as the moduli ratio increases, but above the moduli ratio of 3 its value decreases then increases again as the crack size increases. Reliability of the numerical analysis in this study was acquired with comparison to an analytical solution for the peny-shaped interface crack in an infinite medium.