• Title/Summary/Keyword: Mixed Coal Ash

Search Result 101, Processing Time 0.023 seconds

Physicochemical Effects of Bottom Ash on the Turfgrass Growth Media of Sandy Topsoil in Golf Course (석탄바닥재 처리가 골프장 잔디식재 사질토양의 이화학성에 미치는 영향)

  • Lee, Ju-Young;Choi, Hee-Youl;Yang, Jae-E
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.199-204
    • /
    • 2010
  • Much of the coal ash by thermal power plant has gradually been increased, however researches on the recycling of bottom ash has not been investigated enough so far. In this research, the lysimeter test was conducted to find out the possibilities of bottom ash as soil amendment to improve the physiochemical properties of sandy topsoil of turfgrass in golf course. The turfgrass growth test and leaching test were conducted on the lysimeter. The lysimeter columns were manufactured with various topsoil mixing ratios of 0, 10, 20, 30, and 50% of bottom ash with sand. As a result of leachate analysis through the lysimeter column, the higher ratios of bottom ash mixed affect significantly on water holding capacity of topsoil sand media with decreasing of the percolation rate. The results of leachate analysis in every three days interval, the pH of leachate increased with the bottom ash ratios, but the volume of $NO_3$-N, $NH_4$-N and K decreased significantly. However, the level of EC of leachate had constantly maintained. These results indicate that the application of bottom ash may improve turfgrass growth with water holding capability and fertility of sandy topsoil. However, the negative effects of the bottom ash also evaluated by reducing water permeability and solubility of $PO_4$-P by adsorption into soil particles. The results indicates that the reasonable mixing ratio of the bottom ash as soil amendment should be less than 20% (v/v) with sand which has a low water-holding and fertility in golf course topsoil layers.

Engineering Characteristics of CLSM with Regard to the Particle Size of Bottom Ash (저회의 입도변화에 따른 CLSM의 공학적특성)

  • Lee, Yongsoo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.10
    • /
    • pp.5-10
    • /
    • 2020
  • As the demand for the recycling of industrial by-products increases due to various environmental restrictions including the prohibition of ocean disposal, various studies regarding the recycling of industrial by-products are currently being carried out. One of the industrial by-product, coal ash is produced from thermal power generation; studies on the recycling of fly ash have been actively carried out and it is currently recycled in various fields. In the case of bottom ash, however, only a portion of the total amount generated is primarily processed into a particle size of 2~4mm or less than 2mm to be used for gardening purpose and light weight aggregate and so on. The remaining amount is buried at ash disposal sites. Therefore, various studies are needed to develop measures to use bottom ash. This study aimed at identifying the optimal particle size and mixing ratio of bottom ash to be used as CLSM aggregate. To this end, it evaluated the usability of bottom ash as CLSM aggregate, by investigating the flowability and strength change characteristics of CLSM produced with regard to the mixing ratio of weathered granite soil and bottom ash, particle size of bottom ash to be mixed and soil binder addition rate and conducting a heavy metal leaching test.

Engineering Characteristics of CLSM Using Bottom Ash and Eco-friendly Soil Binder (친환경 고결제와 저회를 활용한 유동성 복토재의 공학적특성)

  • Park, Giho;Kim, Taeyeon;Lee, Yongsoo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.23-29
    • /
    • 2019
  • In general, pipe laying works are performed by constructing underground facilities such as pipes and then refilling the rest of the area with sand or soil. However, there are many problems in the compaction process such as difficulties in tampering around the underground facility and low compaction efficiency. Such problems cause deformation and damage to the underground pipes during refilling work and ultimately cause road sinks. Construction methods using CLSM are one of the typical methods to solve these issues, and recently, studies on CLSM using coal ash, which has similar engineering properties as sand, have been actively performed to protect environment and recycle resources. While many studies have been conducted to recycle fly ash in many ways, the demand for recycling bottom ash is increasing as most of the bottom ash is not recycled and reclaimed at ash disposal sites. Therefore, in order to find bottom ash applications using eco-friendly soil binders that are environmentally beneficial and conform with CLSM standards, this study investigated flow characteristics and strength change characteristics of eco-friendly soil binders, weathered granite soil, a typical site-generated soil, bottom ash, and fly ash mixed soil and evaluated the soil pollution to present CLSM application methods using bottom ash.

Characterization of interfacial chemistry on the coal bottom ash (저회의 계면 화학적 특성 규명)

  • Lee, Ki-Gang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.2
    • /
    • pp.92-97
    • /
    • 2011
  • Landfill is the main treatment method for bottom-ash because it has not only an irregular particle size and ingredients but also not proper recycling treatment. The aim of this study is to raise recycling rate of bottom-ash(nonplasticity pulverulent) and for the purpose of alternatives of clay to investigate the properties of Bottom-ash (B/A)-Hard Clay (H/C) bodies with controlled interfacial chemistry properties. After investigating the sedimentation height of suspensions with controlled pH, it was discovered that there was no hetero-polar aggregation for mixed slips because hard clay and bottom-ash had similar interfacial chemistry properties. Also, bulk density, water absorption, and microstructure properties of each pellet was observed that made by silp casting method and manufactured at $50^{\circ}C$ intervals between $1000{\sim}1250^{\circ}C$. As a result, dispersed slip of clay and bottom ash are possible for slip casting and plastic forming process because they exhibit Bingham plastic behavior. Products that made by slip with dispersed clay and bottom ash are not only suitable for KS L 4201 and KS L 1001 at $1250^{\circ}C$ but it is also possible to apply for ceramic and sanitary ware because specific gravity was about 15 % lighter than general ceramic materials.

Valorization of bottom ash with geopolymer synthesis: Optimization of pastes and mortar

  • Froener, Muriel S.;Longhi, Marlon A.;de Souza, Fabiana;Rodriguez, Erich D.;Kirchheim, Ana Paula
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • Due to the physical-chemical characteristics of some bottom ash (BA), there are technical, economic and environmental limitations to find a destination that will add value to it. In Brazil, this residue is eventually used for filling coal extraction pits or remains in sedimentation ponds, creating a susceptible panorama to environmental issues. The geopolymers binders are one of the alternatives to the proper use high amounts of these materials. In this work, geopolymeric binder pastes were produced with BA mixed to activators with different alkali contents (expressed as %Na2O), as well as the incorporation of soluble silicates (Ms content). The production of binary geopolymeric pastes based on the use of two industrial wastes: fluid catalytic cracking (FCC) and aluminum anodizing sludge (AAS), was also assessed. The content in mass of BA/FCC and BA/AAS ranged from 100/0, 90/10; 80/20 and 70/30. Systems with soluble silicates as activator in a molar ratio SiO2/Na2O of 1.0 (Ms = 1.0) and Na2O content of 15%, showed the best results of mechanical strength (42 MPa at day 28th). The improvement is up to 5X when compared to NaOH based systems. For systems with partial replacement of BA of 10% of AAS and 20% of FCC (80/20), the presence of soluble silicates was also effective to increase compressive strength.

Effect of Fly Ash Fertilizer on Paddy Soil Quality and Rice Growth (비산재로 제조한 비료가 논토양 질과 벼 생육에 미치는 영향)

  • Oh, Se Jin;Yun, Hyun Soo;Oh, Seung Min;Kim, Sung Chul;Kim, Rog Young;Seo, Yung Ho;Lee, Kee Suk;Ok, Yong Sik;Yang, Jae E.
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.229-234
    • /
    • 2013
  • Coal ash can be added to agricultural soils to increase the chemical properties of soil such as pH, cation exchange capacity and nutrient availability of - B, Ca, Mo etc-. Therefore, the main purpose of this study was to evaluate the feasibility of fly ash as a soil amendment in paddy soils. Selected fly ash was mixed with bentonite and calcium hydroxide at the ratio of 80:15:5 (w/w) and manufactured as a pellet type at the size of 10 mm. Field experiments were conducted to evaluate the effects of fly ash fertilizer on the soil quality and crop growth compare to the control (no fertilizer) and, - traditional fertilizer. Results showed that soil pH and organic matter in paddy soils after applying the manufactured fly ash fertilizer were not increased compared to the other two treatments. However, the concentration of available phosphate and silicate in paddy soils were higher than those of the control and traditional fertilization. With regard to crop growth, no significant difference was observed between three different treatments. However, the content of protein in the rice grain cultivated with the fly ash fertilizer was higher than in the rice cultivated by other two treatments. Overall, fly ash fertilizer could increase the concentration of available silicate and phosphate in the paddy soil and improve the rice quality. In conclusion, fly ash can be utilized in agricultural soils as soil amendment, especially in the rice paddy soil.

Properties Evaluation and flowability of Controlled Low Strength Materials Utilizing Industrial By-Products (산업부산물을 활용한 저강도 고유동 채움재의 유동성 및 물성평가)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • The purpose of this study is to expand the use of coal ash and coal slag in thermal power plants. In addition, controlled low strength materials was developed to prevent mine settlement. Bottom ash and KR slag are mixed at ratio of 7:3 to expand the use of industrial by-products through carbonate reaction and inhibit the exudation of heavy metals. In order to efficiently fill the abandon mine, workability and physical properties were evaluated according to flow. As a result of elution of harmful substance experiment, it was confirmed that the carbonation reaction inhibited the elution of heavy metals. It was confirmed that the difference in water ratio was the difference in specific surface area of the controlled low strength materials. It was confirmed that the working efficiency is excellent when the flowability is 300mm compared to 260mm. compressive strength measurement result was relatively high at 260mm compared to 300mm because the number of pores due to decrease of water ratio was small.

Study of Oil Palm Biomass Resources (Part 4) Study of Pelletization of Torrefied Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 IV - 반탄화된 오일팜 바이오매스의 펠릿 성형 특성 연구 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Lee, Ji-Young;Cho, Hu-Seung;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.24-34
    • /
    • 2015
  • Domestic companies supplying electricity must increase obligatory duty to use renewable energy annually. If not met with obligatory allotment, the electricity-supply companies must pay RPS (Renewable Portfolio Standards) penalty. Although the power plants using a pulverizing coal firing boiler could co-fire up to around 3 per cent with wood pellets mixed in with coal feedstock without any major equipment revamps, they recorded only about 60 per cent fulfillment of RPS. Consequently, USD 46 million of RPS penalty was imposed on the six power supplying subsidiaries of GENCOs in 2014. One of the solutions to reduce the RPS penalty is that the power supply companies adopt the co-firing of torrefied lignocellulosic biomass in coal plants, which may contribute to the use of over 30 per cent of torrefied biomass mixed with bituminous coals. Extra binder was required to form pellets using torrefied biomass such as wood chips, PKS (Palm Kernel Shell) and EFB (Empty Fruit Bunch). Instead of corn starch, 30, 50 and 70 per cent of Larix saw dusts were respectively added to the torrefied feedstocks such as Pinus densiflora chips, PKS and EFB. The addition of saw dusts led to the decrease of the calorific values of the pellets but the forming ability of the pelletizer was exceedingly improved. Another advantage from the addition of saw dusts stemmed from the reduction of ash contents of the pellets. Finally, it was confirmed that torrefied oil palm biomass such as PKS and EFB could be valuable feedstocks in making pellets through improved binding ability.

Characterizations of High Early-Strength Type Shrinkage Reducing Cement and Calcium Sulfo-aluminate by Using Industrial Wastes

  • Lee, Keon-Ho;Nam, Seong-Young;Min, Seung-Eui;Lee, Hyoung-Woo;Han, Choon;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.215-221
    • /
    • 2016
  • In this study, the utilization of the by-products of various industries was examined using raw materials of CSA high-functional cement such as coal bottom ash, red mud, phosphate gypsum, etc. Technology to improve energy efficiency and reduce $CO_2$ was developed as part of the manufacturing process; this technology included lower temperature sintering ($150{\sim}200^{\circ}C$) than is used in the OPC cement manufacturing process, replacement of CSA cement with the main raw material bauxite, and a determination of the optimum mix condition. In order to develop CSA cement, a manufacturing system was established in the Danyang plant of the HANIL Cement Co. Ltd., in Korea. About 4,200 tons of low purity expansion agent CSA cement (about 16%) and about 850 tons of the lime-based expansion agent dead burned lime (about 8%) were produced at a rate of 60 tons per hour at the HANIL Cement rotary kiln. To improve the OPC cement properties, samples of 10%, 13%, and 16% of CSA cement were mixed with the OPC cement and the compressive strength and length variation rate of the green cement were examined. When green cement was mixed with each ratio of CSA cement and OPC cement, the compressive strength was improved by about 30% and the expansibility of the green cement was also improved. When green cement was mixed with 16% of CSA cement, the compressive strength was excellent compared with that of OPC cement. Therefore, this study indicates the possibility of a practical use of low-cost CSA cement employing industrial wastes only.

A Study on Manufacturing Cokes for Ferroalloy Using Domestic Anthracite and Waste Plastic (국산(國産) 무연탄(無煙炭)과 폐플라스틱을 사용(使用)하는 합금철용(合金鐵用) 코크스의 제조(製造)에 관한 연구(硏究))

  • Lee, Gye-Seung;Song, Young-Jun;Seo, Bong-Won;Lee, Dae-Young;Lee, Sung-Riong;Yoon, Si-Nae;Kim, Youn-Che
    • Resources Recycling
    • /
    • v.17 no.4
    • /
    • pp.47-56
    • /
    • 2008
  • The aim of this study is to produce cokes which can be used for the production of ferroalloy, for this purpose, domestic anthracite mixed with plastic was sintered at various condition. The combustion and physical properties of anthracite and plastic, coal separation, and the influence of factors on the strength of coke were investigated. The results of this study are as follows: 1. The three kinds of anthracite from the Samcheok region contained 25 to 30% ash of $100{\mu}m$ over size, and have the caloric value of 5,205 cal/g(TaeAn), 4,893 cal/g(JangSung), 4,873cal/g(KyongDong). 2. The recommendable conditions for heavy-fluid separation of the Samcheok coal are to set the specific gravity of heavy fluid to 2.4 and control the size of coal to $35{\sim}140mesh$. 3. It is concluded that phenolic resin powder, liquefied phenolic resin, SAN, and melamine resin can be used as a binder for the anthracite cokes, from the thermal analysis of various plastics. Especially, the liquefied phenolic resin was considered as the most suitable binder as it would simplify the process.