Browse > Article
http://dx.doi.org/10.12989/acc.2022.14.1.001

Valorization of bottom ash with geopolymer synthesis: Optimization of pastes and mortar  

Froener, Muriel S. (Building Innovation Research Unit, Universidade Federal do Rio Grande do Sul (NORIE/UFRGS))
Longhi, Marlon A. (Building Innovation Research Unit, Universidade Federal do Rio Grande do Sul (NORIE/UFRGS))
de Souza, Fabiana (Building Innovation Research Unit, Universidade Federal do Rio Grande do Sul (NORIE/UFRGS))
Rodriguez, Erich D. (Department of Structures and Civil Construction, Technology Centre, Universidade Federal de Santa Maria (UFSM))
Kirchheim, Ana Paula (Building Innovation Research Unit, Universidade Federal do Rio Grande do Sul (NORIE/UFRGS))
Publication Information
Advances in concrete construction / v.14, no.1, 2022 , pp. 1-13 More about this Journal
Abstract
Due to the physical-chemical characteristics of some bottom ash (BA), there are technical, economic and environmental limitations to find a destination that will add value to it. In Brazil, this residue is eventually used for filling coal extraction pits or remains in sedimentation ponds, creating a susceptible panorama to environmental issues. The geopolymers binders are one of the alternatives to the proper use high amounts of these materials. In this work, geopolymeric binder pastes were produced with BA mixed to activators with different alkali contents (expressed as %Na2O), as well as the incorporation of soluble silicates (Ms content). The production of binary geopolymeric pastes based on the use of two industrial wastes: fluid catalytic cracking (FCC) and aluminum anodizing sludge (AAS), was also assessed. The content in mass of BA/FCC and BA/AAS ranged from 100/0, 90/10; 80/20 and 70/30. Systems with soluble silicates as activator in a molar ratio SiO2/Na2O of 1.0 (Ms = 1.0) and Na2O content of 15%, showed the best results of mechanical strength (42 MPa at day 28th). The improvement is up to 5X when compared to NaOH based systems. For systems with partial replacement of BA of 10% of AAS and 20% of FCC (80/20), the presence of soluble silicates was also effective to increase compressive strength.
Keywords
bottom ash; geopolymers; valorization of wastes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Paya, J., Monzo, J., Borrachero, M.V. and Peris-Mora, E. (1995), "Mechanical treatment of fly ashes. Part I: Physico-chemical characterization of ground ashes", Cement Concrete Res., 25(7), 1469-1479. https://doi.org/10.1016/0008-8846(95)00141-X   DOI
2 Provis, J.L. and Bernal, S.A. (2014), "Geopolymers and related alkali-activated materials", Annual Rev. Mater. Res., 44(1), 140205180727009. https://doi.org/10.1146/annurev-matsci-070813-113515   DOI
3 Longhi, M.A. (2015), "Alcali-ativacao de lodo de caulim calcinado e cinza pesada com ativadores convencionais e silicato de sodio alternativo", Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
4 Nazari, A. and Sanjayan, J.G. (2015), "Synthesis of geopolymer from industrial wastes", J. Cleaner Product., 99, 297-304. https://doi.org/10.1016/j.jclepro.2015.03.003   DOI
5 Singhal, D. (2017), "Development of mix design method for geopolymer concrete", Adv. Concrete Constr., Int. J., 5(4), 377-390. https://doi.org/10.12989/acc.2017.5.4.377   DOI
6 Slavik, R., Bednarik, V., Vondruska, M. and Nemec, A. (2008), "Preparation of geopolymer from fluidized bed combustion bottom ash", J. Mater. Process. Technol., 200(1-3), 265-270. https://doi.org/10.1016/j.jmatprotec.2007.09.008   DOI
7 Jindal, B.B., Singhal, D., Sharma, S.K. and Ashish, D.K. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., Int. J., 5(1), 17-29. https://doi.org/10.12989/acc.2017.5.1.017   DOI
8 Kim, S., Ryu, G., Koh, K. and Lee, J. (2012), "Flowability and strength development characteristics of bottom ash based geopolymer", Int. J. Civil Environ. Eng., 6(10), 915-920. https://doi.org/10.5281/zenodo.1075180   DOI
9 Kouamo, H.T., Elimbi, A., Mbey, J.A., Sabouang, C.N. and Njopwouo, D. (2012), "The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products : A comparative study", Constr. Build. Mater., 35, 960-969. https://doi.org/10.1016/j.conbuildmat.2012.04.023   DOI
10 Longhi, M.A., Walkley, B., Rodriguez, E.D., Kirchheim, A.P., Zhang, Z. and Wang, H. (2019), "New selective dissolution process to quantify reaction extent and product stability in metakaolin-based geopolymers", Compos. Part B: Eng., 176, 107172. https://doi.org/10.1016/j.compositesb.2019.107172   DOI
11 Criado, M., Fernandez-Jimenez, A., De La Torre, A.G., Aranda, M.A.G. and Palomo, A. (2007a), "An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash", Cement Concrete Res., 37(5), 671-679. https://doi.org/10.1016/j.cemconres.2007.01.013   DOI
12 Sathonsaowaphak, A., Chindaprasirt, P. and Pimraksa, K. (2009), "Workability and strength of lignite bottom ash geopolymer mortar", J. Hazard. Mater., 168(1), 44-50. https://doi.org/10.1016/j.jhazmat.2009.01.120   DOI
13 Rodriguez, E.D., Bernal, S.A., Provis, J.L., Gehman, J.D., Monzo, J.M., Paya, J. and Borrachero, M.V. (2013), "Geopolymers based on spent catalyst residue from a fluid catalytic cracking (FCC) process", Fuel, 109, 493-502. https://doi.org/10.1016/j.fuel.2013.02.053   DOI
14 Swaddle, T.W. (2001), "Silicate complexes of aluminum (III) in aqueous systems", Coord. Chem. Rev., 221, 665-686. https://doi.org/10.1016/S0010-8545(01)00362-9   DOI
15 Tashima, M.M., Akasaki, J.L., Castaldelli, V.N., Soriano, L., Monzo, J., Paya, J. and Borrachero, M.V. (2012), "New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC)", Mater. Lett., 80, 50-52. https://doi.org/10.1016/j.matlet.2012.04.051   DOI
16 Rohde, G.M. and Zwonok, O. (2006), Cinzas de carvao fossil no Brasil, (G. Rohde, Ed.) (1st Ed.), Cientec, Porto Alegre, Brasil.
17 Rowles, M. and O'Connor, B. (2003), "Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite", J. Mater. Chem., 13, 1161-1165. https://doi.org/10.1039/b212629j   DOI
18 Sartor, M.N. (2006), "Caracterizacao do residuo de anodizacao do aluminio como materia-prima para o desenvolvimento de produtos ceramicos", Universidade Federal de Santa Catarina, Florianopolis, Brazil.
19 Sata, V., Sathonsaowaphak, A. and Chindaprasirt, P. (2012), "Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack", Cement Concrete Compos., 34(5), 700-708. https://doi.org/10.1016/j.cemconcomp.2012.01.010   DOI
20 Xu, H., Li, Q., Shen, L., Wang, W. and Zhai, J. (2010), "Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes", J. Hazard. Mater., 175(1-3), 198-204. https://doi.org/10.1016/j.jhazmat.2009.09.149   DOI
21 Zhang, Z., Wang, H., Provis, J.L., Bullen, F., Reid, A. and Zhu, Y. (2012), "Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide", Thermochimica Acta, 539, 23-33. https://doi.org/10.1016/j.tca.2012.03.021   DOI
22 Duxson, P., Mallicoat, S.W., Lukey, G.C., Kriven, W.M. and Van Deventer, J.S. (2007a), "The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers", Colloids Surf. A: Physicochem. Eng. Aspects, 292(1), 8-20. https://doi.org/10.1016/j.colsurfa.2006.05.044   DOI
23 Ren, X., Zhang, L., Ramey, D., Waterman, B. and Ormsby, S. (2014), "Utilization of aluminum sludge (AS) to enhance mine tailings-based geopolymer", J. Mater. Sci., 50(3), 1370-1381. https://doi.org/10.1007/s10853-014-8697-y   DOI
24 Topcu, I.B., Toprak, M.U. and Uygunoglu, T. (2014), "Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement", J. Cleaner Product., 81, 211-217. https://doi.org/10.1016/j.jclepro.2014.06.037   DOI
25 Trochez, J.J., Mejia de Gutierrez, R., Rivera, J. and Bernal, S.A. (2015), "Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios", Materiales de Construccion, 65, 1-11. https://doi.org/10.3989/mc.2015.00814   DOI
26 World Coal Association, (2014), Coal Facts 2014, London, UK.
27 Zhang, Z., Provis, J.L., Wang, H., Bullen, F. and Reid, A. (2013), "Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin", Thermochimica Acta, 565, 163-171. https://doi.org/10.1016/j.tca.2013.01.040   DOI
28 Boonserm, K., Sata, V., Pimraksa, K. and Chindaprasirt, P. (2012), "Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive", Cement Concrete Compos., 34(7), 819-824. https://doi.org/10.1016/j.cemconcomp.2012.04.001   DOI
29 Boca Santa, R.A.A. (2012), "Desenvolvimento de geopolimeros a partir de cinzas pesadas oriundas da queima do carvao mineral e metacaulim sintetizado a partir de residuo da industria de papel", Universidade Federal de Santa Catarina, Florianopolis, Brazil.
30 da Costa, E.B., Rodriguez, E.D., Bernal, S.A., Provis, J.L., Gobbo, L.A. and Kirchheim, A.P. (2016), "Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge", Constr. Build. Mater., 122, 373-383. https://doi.org/10.1016/j.conbuildmat.2016.06.022   DOI
31 Cunha, A.L.C.da. (2012), "Caracterizacao e Estudo de Aplicacao de Rejeito Catalitico de Unidade FCC como Material Pozolanico", Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
32 Alonso, S. and Palomo, A. (2001), "Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio", Mater. Lett., 47(1-2), 55-62. https://doi.org/10.1016/S0167-577X(00)00212-3   DOI
33 Guerrieri, M., Sanjayan, J. and Collins, F. (2009), "Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures", Mater. Struct., 43(6), 765-773. https://doi.org/10.1617/s11527-009-9546-3   DOI
34 Provis, J.L., Duxson, P., Lukey, G.C., Separovic, F., Kriven, W.M. and Van Deventer, J.S. (2005), "Modeling speciation in highly concentrated alkaline silicate solutions", Indust. Eng. Chem. Res., 44(23), 8899-8908. https://doi.org/10.1021/ie050700i   DOI
35 Juenger, M.C.G., Winnefeld, F., Provis, J.L. and Ideker, J.H. (2011), "Advances in alternative cementitious binders", Cement Concrete Res., 41(12), 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012   DOI
36 Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., Int. J., 6(4), 345-362. https://doi.org/10.12989/acc.2018.6.4.345   DOI
37 Lee, W.K.W. and Van Deventer, J.J. (2002), "Effects of anions on the formation of aluminosilicate gel in geopolymers", Indust. Eng. Chem. Res., 41, 4550-4558. https://doi.org/doi:10.1021/ie0109410   DOI
38 Longhi, M.A., Rodriguez, E.D., Walkley, B., Zhang, Z. and Kirchheim, A.P. (2020), "Metakaolin-based geopolymers: Relation between formulation, physicochemical properties and efflorescence formation", Compos. Part B: Eng., 182, 107671. https://doi.org/10.1016/j.compositesb.2019.107671   DOI
39 Melo, L.D.A. (2011), "Sintese e caracterizacao de geopolimeros contendo filitos", Instituto militar de Engenharia, Rio de Janeiro, Brazil.
40 Fernandez-Jimenez, A. and Palomo, A. (2005), "Composition and microstructure of alkali activated fly ash binder: Effect of the activator", Cement Concrete Res., 35(10), 1984-1992. https://doi.org/10.1016/j.cemconres.2005.03.003   DOI
41 Hardjito, D., Wallah, S.E., Sumajouw, D.M.J. and Rangan, B.V. (2004), "Brief review of development of geopolymer concrete", Proceedings of the 8th CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Las Vegas, AZ, USA, May.
42 Izquierdo, S., Diaz, J., Mejia, R. and Torres, J. (2013), "Cemento adicionado con un residuo del proceso de craqueo catalitico (FCC): Hidratacion y microestructura", Revista Ingenieria de Construccion, 28(2), 141-154. https://doi.org/10.7764/ricuc.28.2.469   DOI
43 Criado, M., Fernandez-Jimenez, A. and Palomo, A. (2007b), "Alkali activation of fly ash: Effect of the SiO2/Na2O ratio", Micropor. Mesopor. Mater., 106(1-3), 180-191. https://doi.org/10.1016/j.micromeso.2007.02.055   DOI
44 Criado, M., Fernandez-Jimenez, A., Palomo, A., Sobrados, I. and Sanz, J. (2008), "Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29Si MAS-NMR Survey", Micropor. Mesopor. Mater., 109(1-3), 525-534. https://doi.org/10.1016/j.micromeso.2007.05.062   DOI
45 Deabriges, J. (1982), Patente US 4,336,235: Process for the manufacture of sodium silicate, pp. 334-337.
46 Palomo, A., Alonso, S. and Fernandez-Jimenez, A. (2004), "Alkaline Activation of Fly Ashes : NMR Study of the Reaction Products", J. Am. Ceramic Soc., 87(6), 1141-1145. https://doi.org/10.1111/j.1551-2916.2004.01141.x   DOI
47 Passuello, A., Rodriguez, E.D., Hirt, E., Longhi, M., Bernal, S.A., Provis, J.L. and Kirchheim, A.P. (2017), "Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators", J. Cleaner Product., 166, 680-689. https://doi.org/10.1016/j.jclepro.2017.08.007   DOI
48 Amaral Filho, J.R.D., Schneider, I.A.H., de Brum, I.A., Sampaio, C.H., Miltzarek, G. and Schneider, C. (2013), "Caracterizacao de um deposito de rejeitos para o gerenciamento integrado dos residuos de mineracao na regiao carbonifera de Santa Catarina, Brasil", Revista Escola de Minas, 66(c), 347-353. https://doi.org/10.1590/S0370-44672013000300012   DOI
49 DNPM (2016), Sumario Mineral 2015 (Vol. 35), Brasilia.
50 Duxson, P., Provis, J.L., Lukey, G.C. and Van Deventer, J.S. (2007b), "The role of inorganic polymer technology in the development of 'green concrete'", Cement Concrete Res., 37(12), 1590-1597. https://doi.org/10.1016/j.cemconres.2007.08.018   DOI
51 Fawer, M., Concannon, M. and Rieber, W. (1999), "Life cycle inventories for the production of sodium silicates", Int. J. Life Cycle Assess., 4(4), 207-212. https://doi.org/10.1007/BF02979498   DOI
52 Costa, E.B.D. (2013), "Aproveitamento do Residuo de Anodizacao do aluminio na Producao do Cimento Sulfoaluminato de Calcio Belitico", Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
53 Chindaprasirt, P., Jaturapitakkul, C., Chalee, W. and Rattanasak, U. (2009), "Comparative study on the characteristics of fly ash and bottom ash geopolymers", Waste Manag., 29(2), 539-543. https://doi.org/10.1016/j.wasman.2008.06.023   DOI
54 Chotetanorm, C., Chindaprasirt, P., Sata, V., Rukzon, S. and Sathonsaowaphak, A. (2013), "High-calcium bottom ash geopolymer: sorptivity, pore size, and resistance to sodium sulfate attack", J. Mater. Civil Eng., 25(1), 105-111. https://doi.org/10.1061/(ASCE)MT.1943-5533   DOI