• Title/Summary/Keyword: Mittag-Leffler function

Search Result 49, Processing Time 0.02 seconds

Bending of a rectangular plate resting on a fractionalized Zener foundation

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;Mei, Guo-Xiong
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1069-1084
    • /
    • 2014
  • The long-term performance of plates resting on viscoelastic foundations is a major concern in the analysis of soil-structure interaction. As a powerful mathematical tool, fractional calculus may address these plate-on-foundation problems. In this paper, a fractionalized Zener model is proposed to study the time-dependent behavior of a uniformly loaded rectangular thin foundation plate. By use of the viscoelastic-elastic correspondence principle and the Laplace transforms, the analytical solutions were obtained in terms of the Mittag-Leffler function. Through the analysis of a numerical example, the calculated plate deflection, bending moment and foundation reaction were compared to those from ideal elastic and standard viscoelastic models. It is found that the upper and lower bound solutions of the plate response estimated by the proposed model can be determined using the elastic model. Based on a parametric study, the impacts of model parameters on the long-term performance of a foundation plate were systematically investigated. The results show that the two spring stiffnesses govern the upper and lower bound solutions of the plate response. By varying the values of the fractional differential order and the coefficient of viscosity, the time-dependent behavior of a foundation plate can be accurately captured. The fractional differential order seems to be dependent on the mechanical properties of the ground soil. A sandy foundation will have a small fractional differential order while in order to simulate the creeping of clay foundation, a larger fractional differential order value is needed. The fractionalized Zener model is capable of accounting for the primary and secondary consolidation processes of the foundation soil and can be used to predict the plate performance over many decades of time.

ANALYSIS OF AN EXTENDED WHITTAKER FUNCTION AND ITS PROPERTIES

  • Nabiullah Khan;Saddam Husain;M. Iqbal Khan
    • Honam Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.184-197
    • /
    • 2023
  • For the numerous uses and significance of the Whittaker function in the diverse research areas of mathematical sciences and engineering sciences, This paper aims to introduce an extension of the Whittaker function by using a new extended confluent hypergeometric function of the first kind in terms of the Mittag-Leffler function. We also drive various valuable results like integral representation, integral transform and derivative formula. Further, we also analyze specific known results as a particular case of the main result.

THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION WITH CAPUTO DERIVATIVES

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.179-190
    • /
    • 2005
  • We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order ${\beta}{\in}$ (0, 2] and the first-order time derivative with Caputo derivative of order ${\beta}{\in}$ (0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.

A TYPE OF FRACTIONAL KINETIC EQUATIONS ASSOCIATED WITH THE (p, q)-EXTENDED 𝜏-HYPERGEOMETRIC AND CONFLUENT HYPERGEOMETRIC FUNCTIONS

  • Khan, Owais;Khan, Nabiullah;Choi, Junesang;Nisar, Kottakkaran Sooppy
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.381-392
    • /
    • 2021
  • During the last several decades, a great variety of fractional kinetic equations involving diverse special functions have been broadly and usefully employed in describing and solving several important problems of physics and astrophysics. In this paper, we aim to find solutions of a type of fractional kinetic equations associated with the (p, q)-extended 𝜏 -hypergeometric function and the (p, q)-extended 𝜏 -confluent hypergeometric function, by mainly using the Laplace transform. It is noted that the main employed techniques for this chosen type of fractional kinetic equations are Laplace transform, Sumudu transform, Laplace and Sumudu transforms, Laplace and Fourier transforms, P𝛘-transform, and an alternative method.

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE NEW METHODS FOR SOLUTION

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.31-48
    • /
    • 2007
  • The paper deals with the solution of some fractional partial differential equations obtained by substituting modified Riemann-Liouville derivatives for the customary derivatives. This derivative is introduced to avoid using the so-called Caputo fractional derivative which, at the extreme, says that, if you want to get the first derivative of a function you must before have at hand its second derivative. Firstly, one gives a brief background on the fractional Taylor series of nondifferentiable functions and its consequence on the derivative chain rule. Then one considers linear fractional partial differential equations with constant coefficients, and one shows how, in some instances, one can obtain their solutions on bypassing the use of Fourier transform and/or Laplace transform. Later one develops a Lagrange method via characteristics for some linear fractional differential equations with nonconstant coefficients, and involving fractional derivatives of only one order. The key is the fractional Taylor series of non differentiable function $f(x+h)=E_{\alpha}(h^{\alpha}{D_x^{\alpha})f(x)$.

GENERALIZED FRACTIONAL DIFFERINTEGRAL OPERATORS OF THE K-SERIES

  • Gupta, Rajeev Kumar;Shaktawat, Bhupender Singh;Kumar, Dinesh
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.61-71
    • /
    • 2017
  • In the present paper, we further study the generalized fractional differintegral (integral and differential) operators involving Appell's function $F_3$ introduced by Saigo-Maeda [9], and are applied to the K-Series defined by Gehlot and Ram [3]. On account of the general nature of our main results, a large number of results obtained earlier by several authors such as Ram et al. [7], Saxena et al. [14], Saxena and Saigo [15] and many more follow as special cases.

FRACTIONAL EULER'S INTEGRAL OF FIRST AND SECOND KINDS. APPLICATION TO FRACTIONAL HERMITE'S POLYNOMIALS AND TO PROBABILITY DENSITY OF FRACTIONAL ORDER

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.257-273
    • /
    • 2010
  • One can construct a theory of probability of fractional order in which the exponential function is replaced by the Mittag-Leffler function. In this framework, it seems of interest to generalize some useful classical mathematical tools, so that they are more suitable in fractional calculus. After a short background on fractional calculus based on modified Riemann Liouville derivative, one summarizes some definitions on probability density of fractional order (for the motive), and then one introduces successively fractional Euler's integrals (first and second kind) and fractional Hermite polynomials. Some properties of the Gaussian density of fractional order are exhibited. The fractional probability so introduced exhibits some relations with quantum probability.

A STUDY OF THE RIGHT LOCAL GENERAL TRUNCATED M-FRACTIONAL DERIVATIVE

  • Chauhan, Rajendrakumar B.;Chudasama, Meera H.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.503-520
    • /
    • 2022
  • We introduce a new type of fractional derivative, which we call as the right local general truncated M-fractional derivative for α-differentiable functions that generalizes the fractional derivative type introduced by Anastassiou. This newly defined operator generalizes the standard properties and results of the integer order calculus viz. the Rolle's theorem, the mean value theorem and its extension, inverse property, the fundamental theorem of calculus and the theorem of integration by parts. Then we represent a relation of the newly defined fractional derivative with known fractional derivative and in context with this derivative a physical problem, Kirchoff's voltage law, is generalized. Also, the importance of this newly defined operator with respect to the flexibility in the parametric values is described via the comparison of the solutions in the graphs using MATLAB software.