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FRACTIONAL EULER’S INTEGRAL OF FIRST AND SECOND
KINDS. APPLICATION TO FRACTIONAL HERMITE’S
POLYNOMIALS AND TO PROBABILITY DENSITY OF

FRACTIONAL ORDER

GUY JUMARIE

ABSTRACT. One can construct a theory of probability of fractional order in
which the exponential function is replaced by the Mittag-Lefller function.
In this framework, it seems of interest to generalize some useful classical
mathematical tools, so that they are more suitable in fractional calculus.
After a short background on fractional calculus based on modified Rie-
mann Liouville derivative, one summarizes some definitions on probability
density of fractional order (for the motive), and then one introduces suc-
cessively fractional Euler’s integrals (first and second kind)} and fractional
Hermite polynomials. Some properties of the Gaussian density of fractional
order are exhibited. The fractional probability so introduced exhibits some
relations with quantum probability
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1. Introduction

Fractional calculus is getting more audience among scientists for its interest
by itself, but also, and mainly because it provides an alternative to describe
hysical phenomena involving coarse-grained space, apart from being of prospect
use in the modeling of fractional Brownian motion. There aretwo kinds of frac-
tional calculus: a fractional calculus for differentiable functions, and a fractional
calculus for functions which are continuous but non-differentiable. In this frame-
work,recently we have proposed a slight modification of the Riemann-Liouville
fractional derivative of which the main features can be summarized as follows
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The fractional derivative of a constant is zero. It is different from Caputo-
Djrbashian definition [2,3] in the sense that the latter refers to the derivative of
the function under consideration whilst our definition does not.

Our definition provides an expression for Fractional Taylor’s series which al-
lows us to recover the series by the means of which the Mittag Leffler function
is defined. And with this definition, the Littag-Leffler function E,(z®)turns to
be exactly the solution of the solution of the fractional differential equation

Y 9(@) = My(z)

where A is a real valued constant parameter such that 0 < A < 1.

In this framework, in quite a natural way, we have been led to generalize prob-
ability by introducing the fractional counterpart of probability density, referred
to as probability ensity of fractional order. The basic diffusion equation which
reads

dep(x,t) = —0:(fp) + (1/2)0%,(4°p)
has been generalized in various ways to study porous media, by introducing
fractional derivative w.r.t. [1]. For instance, one can find the equation

dip(x,t) = =07 (fp) + (1/2)032(¢°p), 0<a<l.

To the best of our knowledge, these equations have been introduced more or
less formally, and in an attempt to provide a sound support to their derivation,
we have proposed recently a new concept of probability density of fractional
order which is fully consistent with the fractional calculus based on the modified
Riemann-Liouville as we have introduced it [7].

It appears that this fractional probability density is more or less related with
signed measure of probability on the one hand [5], and quantum probability on
the other hand, and the purpose of the present paper is to comment on this
point. Should this connection be soundly established, then one would be in a
position to consider quantum probability with new points of view.

The paper is organized as follows. For the convenience of the reader we think
that it is necessary to give a short background on the calculus of fractional order
with the modified Riemann-Liouvillé derivative which we have had to introduce
in order to cope with some pitfalls (Section 2), and later we shall bear in mind
the essential of probability density of fractional order (Section 3). Then we shall
define successively fractional Euler’s integral of the first kind (Section 4) and of
the second kind (Section 5) and fractional Hermite’s polynomials (Section 6).
And then, to conclude, we shall show how one can use Mittag-Leffler function
to define a somewhat Gaussian probability density of fractional order (Section
7).
The present article can be thought of as the continuation of the Ref [8] in
which we introduced Fourier’s transformation of fractional order.

2. Background on fractional calculus

2.1. Fractional derivative via fractional difference
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Definition 2.1. Let f: R — R,z — f(z) , denote a continuous (but not
necessarily differentiable) function, and let denote a constant discretization span.
Define the forward operator by the equality (the symbol := means that the left
side is defined by the right side)

FW(h)f(z) := f(z + h); 1)

then the fractional difference of order a, 0 < a < 1, of f(z) is defined by the
expression [5,6].

83 Q N o
A%@) = (FW = 1950 = 3 ()1 sl @)
k=0
and its fractional derivative of order is defined by the limit
A% f(z)
(@) () =
£ @) = lim = 3)

This definition is close to the standard definition of derivative (calculus for be-
ginners), and as a direct result, the -th derivative of a constant is zero.

2.2 Modified fractional Riemann-Liouville derivative (via integral)
An alternative to the Riemann-Liouville definition of fractional derivative

In order to circumvent some drawbacks involved in the classical Riemann-
Liouville definition, we have proposed the following alternative to the Riemann-
Liouville definition of F-derivative, which is moreover fully supported by the
definition 2.1.

Corollary 2.1 (Riemann-Liouville definition revisited). As a direct result of

the definition 2.1, the fractional derivative of a function f(x) can be obtained as
follows

(¢) Assume that f(z) is a constant K . Then its fractional derivative of order
18

K
Nl-aw)
=0, a>0 (5)
(#4) When f(z) is not a constant, then one will set

flz) = f(0) + (f(z) ~ f(0)),
and its fractional derivative will be defined by the expression
(@) = DIF(0) + Df (f(z) ~ £(0)),

in which, for negative o , one has

1
D2 — =
2 (£() = £0) = 5y
whilst for positive « , one will set

Dy (f(z) = f(0)) = Dy f(z) = D(D*7 f(2)), 0<a<l,

DOK = ™% a <0, (4)

/0 N@—o T fE)de, a<0,  (6)
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When n<a<n+1, one will set

f(z) = (f(a_")(x))(m ,n<aln+1l,n>1. (8)

We shall refer to this fractional derivative as to the modified Riemann Liouville
derivative.

Remark that the definition expressed by the equations (7) and (8) is different
from the expression [2,3], i.e.,

0 = e [ @- 0@

which in substance, says that the function under consideration should be differ-
entiable. Both this definition above and the equation (7) provide zero for the
fractional derivative of a constant.

For different points of view on fractional derivative, see for instance [10,11,12].

2.3 Fractional Taylor’s series for one-variable functions

A generalized Taylor expansion of fractional order which applies to non-
differentiable functions reads as follows [6,7].

Proposition 2.1 Assume that the continuous function f: R — R,z — f(z)
has fractional derivative of order ko, for a given o, 0 < a < 1, and any positive
integer k; then the following equality holds, which reads

flx+h)= ZF(1+ak feR(z), 0<a<1 (9)

where f(o%)(x) is the derivative of order of f(z) in the sense that D°* =
D*D*..D* k times.
With the notation I'(1 + ak) =: (ak)!, one has the formula

flz+h) =i%f(“k)(m), O<ax<l, (10)
k=0 ’

which looks like the classical one.
Alternatively, in a more compact form, one can write

f(@ +h) = Eqo(h*Dg) f(z),

where D is the derivative operator with respect to  and E,(y) denotes the
Mittag-LefHler function defined by the expression

Ealy) : ZI‘ 1+ ak)’ (11

Mc-Laurin series of fractional order
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Let us make the substitution and into (9), we so obtain the fractional Mc-
Laurin series

o ok
fl@) =S e feP(0), 0<a < 1. (12)
2T((1 + ak) “

A simple rationale to take this formula for granted is to notice that it holds for
the Mittag-Leffler function and then to consider those functions which can be
approximated by sequences of Mittag-Lefler functions.

2.4 Some useful relations. The equation (9) provides the useful relation
d*f=T{l1+a)df, 0<a<l, (13)
or in a finite difference form A®f ~ T'(1 + «)Af.
Corollary 2.1 The following equalities hold, which are

Dz =T(y+ I Hy+1-a)z" % ~v>0, (14)

or, what amounts to the same (we set o =n+8¢)
Dy =Ty + ) Yy +1-n—-02"""% 0<0<1, (15)
(u(z)v(z)) ™ = u® (@)v(z) + u(@)o® (), (16)
(f @)D = f () (@), (17)
(f (@)D = £ () (). (18)

w(z) 1s non-differentiable in (14) and (15) and differentiable in (16), is non-
differentiable in (14), and is differentiable in (15) and non-differentiable in (16).

Corollary 2.2 Leibniz chain derivative rule for fractional derivative. Assume
that f(z) and x(t) are two R — R function which both have derivatives of order
a, 0 < a < 1, then one has the chain rule

£ (@) = T2 = ) {12 (2)e! (). (19)
Proof. One has the equality
& fe(t)  d°f(a) (glg)

dte T dze  \ dt

but the derivative
d%z 1

dex {1 - a)'.x

l—a

yields
(dz)* = (1 — a)lz* " 1d%z,
therefore the result.
2.5 Fractional integration with respect to (dz)®

The integral with respect to (dz)® is defined as the solution of the fractional
differential equation

dy = f(z)(dz)*, =2z 0, y(0)=0 (20)
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which is provided by the following result:

Lemma 2.1 Let f(z) denote a continuous function, then the solution y(z),
y(0) = 0, of the equation ((18)) is defined by the equality

y = /0 FE)de) = a /0 (- &), 0<a<l.  (21)

Proof. On multiplying both sides of (2.18) by «!, and on taking account of
(2.12), we have the equality y(*) (x) = a!f(x) which provides
al

R O / “(@— e f(€)de. (22)

Definition 2.1 Framework lemma 2.1. On assuming that y(—oc0) =0, we shall

write
r

u(z) = /_ " e = o / (z — €)* 1 f(€)de. (23)

—o0
For the motivation of this definition, see [6,7].
The fractional integration by part formula reads

b b
[ i @u@ @ = el - [ u@ @@ @)

a a

and it can be obtained easily by combining (14) with (19).
Remark that one has the equality

D f@) = [ e, (25)

All this material is necessary to fully expand the fractional probability calculus
outlined below. For other points of view on fractional calculus, see for instance

[4,9,10,11,12].
2.6 Transformation of variables in integrals of fractional order

One-dimensional integral
Assume that we make the transformation = u(¢) in the integral

I= é/ab flz)(dz)*, O0<a<l; (26)

then two instances must be taken into account depending upon whether u(t) is
differentiable or not. In the first case, one has dz = «/(t)dt and inserting into
(2.24) yields

u=t(b)
I= / £ (ut)) (' (£))° (d)° @7)
u~1(a)

In contrast, assume now that u(¢) is not differentiable but has a fractional de-
rivative of order 3, 0 < # < 1. Then applying the fractional Taylor’s series to
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yields Bldu = u'®) (t)(dt)?, therefore (after substituting into (24))

uvl(b) a
r=@e [ o) (w0 m)” @ (28)
u~t(a)
Two-dimensional integral
The same rational holds for the integral

J=/ﬂ%MWW@ﬂ (20)
D

with respect to the variable transformation x = w(t,7) and .y = v(t, 7). If the
transformation is differentiable, then one has

Ou, v)

J = / u, v !
D f( ) 8(ta T)
Otherwise, assuming that u(¢, 7) and v(¢, 7) have fractional derivatives of order

B3 only, we shall introduce the Jacobian determinant of order defined 8 by the
expression

[¢]

(dt)®(dr)P. (30)

9°(u, v) ®)
to have 5
_ —2a 07 (u,v) ¢ aB afB
7= [ s |G aesanes, )

In the next section on fractional probability density could be dropped in a first
reading, but in fact, it displays the main motivation of the results contained in
the paper.

3. Probability density of fractional order

3.1 One dimensional fractional probability density
Main equations

Definition 3.1 Let X denote a real-valued random variable defined on the
interval [a,b] and let p,(z), po(x) > 0, denote a positive function also defined
on [a,b] . X is referred to as a random variable of fractional order o, 0 < a < 1,
with the probability p,(z), whenever for any (z',z), a < ¢’ < X <z < b, one
has ) ”
’ ' L ey

Fla',m) = Pr{e < X <o} = ps / Pal€)(de) (33)

with the normalizing condition

F(a,b) = 1. (34)

Remark that this definition is quite different from Levy’s [9], for instance, and
others, which are rather related to the Kolmogorov’s entropy defined on dynam-
ical systems.

The coefficient I'"* (1 + ) has been introduced in (31) to preserve (via (25)),
the standard relation F'(x) = p(z), see (3.5); but it could be dropped at first
glance, and this will be a matter for further discussion.
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According to (20), if we denote by p(z) the corresponding probability density
of M, in the usual sense of this term, one has the identit

p(z) =T (a)(a — 2)* 'pa(z), = <a. (35)

In other words, the fractional probability density p,(z) can be thought of as
defining a family of probability density functions p(z).

F(x',x) asso defined is a generalization of the (cumulative) distribution F(x),

and is introduced, because here one has F(a,b) + F(b,¢) # F(a,c), a <b < ¢,
More precisely, by using the equation (19) one can check that

F(a,c) < F(a,b)+ F(b,c), a<b<e (36)

In addition, the relation between F(z,z) and p,(z) is provided by the equality
0°F(z', x)

— % (). 37

o Pa(T) (37)

Example 3.1 For a uniform random variable on the interval [a, ¢], one obtains
the expressions p,(z) = (¢ — a)™%, and

F(z',z) = (z — 2'}*/(c — a)%,

which provides

FY%a,c) = FY/%(a,b) + F/%(b,c), a<b<c, (38)
or in & like manner
Pr(AU B)Y/® = Pr(A)Y/* + Pr(B)Y/* — Pr(AN B)Y/*. (39)

3.2 Characteristic function of fractional order. In probability theory,
on assuming that a random variable is completely defined by its moments (X™)
(and this is generally the case except in some theoretical pathological cases) one
is used to introduce the characteristic function

u) = <ei“X> , u€ER, (40)

or, sometimes, the generating function ®(u/¢). Here, in quite a natural way, we
shall consider the moments

Maa 1= (X", = [ "pa(a)(do)", (a1)

®
which suggests to introduce a fractional characteristic function either in the form
(Eq (iuX®)) Zz T (42)

(Eq (iu*X*)) Z i (43)

For the sake of physical dimension, we shall rather select the second equation
and we shall refer to
D, (u) := (Ey (u®X*)) (44)
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One can show that the corresponding inversion theorem is provided by the ex-
pression
+o0

1 . o w)e
pole) = i / i (i(~uz)®) o (u)(du)®, (45)

— 00

where M, is the period of E,(iz®) defined by the equation FE, (i(M,)%) = 1.
4. Fractional Euler’s integral of the first kind

Definition 4.1 We suggest to generalize the Fuler's gamma function I'(z) in
the form

1

= riy

E,(—t*)t*@=D@n® | 0<a<1 (46)

o~—_8

On making the variable transformation ¢ = 72 in this integral, and using (25),
one can re-write I'y(z) in the form

To(z) = _/ @) e (gr)e | 0 <a<1. (47)

This being the case an integration by part directly derived from the chain rule
(14) provides

Lo(z +1) = (a)zlo(z). : (48)
Assume that z is an integer n, then, according to (53), one obtains
Ta(n+1) = (ah)™nily(1). (49)

This being the case, according to (23),one has merely

T, (1) = [D‘“Ea (—x")]go = [Ey (295 =1,
therefore the equality
Ia(n+1) = (a!)™nl (50)

Explaining (55) yields
Fo(n+1) = nal(na! — a!)(na! — 2a!)...(3a!)(2a!) (o).

in other words everything happens as if o! were substituted for the unit in the
definition of the factorial.

5. Fractional Euler’s integral of the second kind

Definition 5.1. The fractional Euler’s function of second kind is defined by the
expression
1

B te=1(1 — )= (de)e. 51
@)= e [ () 6V
0
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On making the transformation we can write as well
1

(a4
Ba(e,y) = = [ w201 - u2) - Duo (du)®, (52)
ol
and the new change of variable u = sin 6 yields
/2
o7

Bo(z,y) = 2 / (sin 0)*= 1 (cos )2 =1) (dB)°. (53)
0

Proposition 5.1 The following relation holds, which is

By (z,y) = F%Z%% (54)
Proof. Using (4.2), one writes
+00+00 ;
Lo ()T (y) (a' // u +v )a] u2ax_o‘v2°‘y“°‘(du)°‘(dv)°‘
+ootoc
4(a| / / (u +v)] w27 [ **Y " (du)> (dv)®.  (55)

Transforming to polar coordinates with u = rcos @ and v = rsinf, we obtain

o] B 2
22 .
Fa(@)a(v)= 307 / Eq(—r®)r2e@ty)—e(grye / |cos2 =2 9 5in®*¥ = 9] (df)"
/2
(a, / Eq(—r?®)r2elety)=e(gr)a / cos?* ™ § sin®*Y = §(df)

0
- Fa(ZE + y)Ba(z, y)

6. Hermite polynomials of fractional order
6.1 Definition and main properties

Definition 6.1 The Hermite polynomials of order « are defined by the equation
dna )

H,(2)(z) = (1) Ea(e*®) 35— Ea(~2*), 0<a<l, (56)
where n denotes a positive integer.
First polynomials _
Ho(z) =1, (57)
Hy(x) = (22)°, (58)

Hy(z) = (22)%* — 2(a!), (59)
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Hs(z) = (22)3 — 2 <(a!) + ((20‘3),'> (22), (60)

Hi(z) = (20)% — 2 ((a!) + ((25‘))!! + g’g;:) (22)2 + 22 a{f;‘;?' (61)
Hs(x) = (22)" - 2 (; (kfff);),> (22)

+2? (% <a! + (2(3)!) + aé;i‘;‘!)!> (22)*. (62)

Clearly H 5(z) is a polynomial with respect to the variable z®.
Generating function

Lemma 6.1 Assume that o = 1/(2k + 1), then the generating function

Z

tnO(

18 provided by the expression

G(z,t) = E., ((th - t"“)“) . (63)

Proof. Using the definition (61) one can write

Glz,t) = Eo(@®)) (-1 D™ Eq(—22®)

therefore the result.

Note that in order to btain the above expression, we have used the basic
property of the Mittag-LefHler function expressed by the equation (48)..
Recursion formulae.

Lemma 6.2 Assume that o = 1(2k + 1), then one has the recursion formula

(na)! =~
———H, (). 64
(na—a)t™" @) (64)
Proof. The fractional derivative of the generating function provides

9G(z, t) s doH,(3)
W E ((QJZ't —t 2t = Z ' dCCO‘

n:O

(65)
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On esplaining the Mittag-Leffler function by its series into (69) yields

Z e g dfi Cfx - (2ta)z(2?)!ﬁn(x) (66)

l
(Ja n=0

and identifying the coefficients of t"® provides the result.

Lemma 6.3 Assume that a = 1(2k + 1); then the following recursion formula
holds,

(na)! =

Hpi1(2) = (22) Hp(z) — 2mHn_1(m). (67)

Proof. On deriving the definition (61) of the fractional Hermite polynomial, we
obtain

H{)(z) = (~1)"(22)*Ea(c**) D" Ba(~2°*) = Hp1(2)

= (22)* Hn(z) = Hya(2) (68)
This being the case, according to (69) one has as well

(na)!

H(z) =2 H,_1(z),.

(na — a)!
and comparing with (72) provides the result.
Fractional differential equation

Lemma 6.4. Assume that a = 1/(2k+ 1). Then ﬁn(x) is solution of the
fractional differential equation

HE)(z) = (20) B () + (2%

Proof. We start from the equation (6.9) to write successively

- 2"‘a!) H,(z)=0.  (69)

(na)!

H(@) = 2(na a)l

B\ (2) = D*((22)* Ho(w)) — H (w)

na + a)!

= 2l (@) + (20 Ae) - 2 o)

therefore the result.

Orthogonality of fractional Hermite polynomials

Lemma 6.5 The fractional Hermite polynomials are orthogonal on R, provided
that o =1/(2k + 1).
Proof. For n # m , one has successively

(o H,) = /§R Ea(=a®®) B (2) Hon () (dz)®

|

-1 /»‘e Hp(2) D" Eo(—22%)(dz)”.
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On integrating by parts, one has as well
(o Hi) = =1 [ B @)D B (0 )
R

and, on taking account of (69),

7 Ir n (ma)' 77 na—o @ a
(Ho ) = ~(-1) Q(ma_a)!/%Hm_l(x)D Ea(—22)(dz)
Slz[l(ma — ka)!
= (=1)"*s 28 mkjo / I?m_s(x)D"a_saEa(—:cQo‘)(da:)o‘, n>s
klel(ma —ka)! R
= (-1)"*s 28“(m(am—a)s!a)! /gRfIm_s(a:)D"a_S“Ea(—xza)(dx)a, n>s.  (70)

(i) Assume that s = n, and having in mind that INJO(Q:) =1, we obtain (with
the suitable constant K., derived from (74))

<ﬁnaﬁm> — Km/D(n-m—#—l)aEa(_an)(dx)a’
R

+o00
= Knal [D("_m)o‘Ea(—a:Qa)] =0.
(ii) Assume now that , then we eventually have
<ﬁn,f1m> = 2"(na)! / Eo(—2%)(dz)®, (71)
®

7. Gaussian probability density of fractional order
7.1 Fractional Gaussian density and Mittag-Leffler random variable

Definition 7.1. A random variable of fractional order is referred to as a Mittag-
Leffler variable, or a ML-variable, when its probability density of fractional order
Po() is defined by the expression

K, (z — p)*e
o(@)(dz)® = 2, (- K
pa(z)(dz) =L < Sania

> (dz)®, z-pu >0, (72)

Pl — 1) = pa(p — ),
where K, is a normalizing constant, i.e., such that 2f0°° p(z)(dz)* = 1, and

p together with o denote real valued parameters of which the meaning will be
clarified shortly.

If we had introduced the normalized variable Y := (X —p)/o , we would have
(dz)* = 0®(dz)® therefore the fractional probability density
20

) )" = Koy (<40 ) @) (73)

In the following, we shall use the notation X oc M L(u, 02%).
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Remark. As so defined, the probability density is symmetric with respect to p,
which so clearly appears as being the mean value of the random variable.

7.2 Fractional moments of the Mittag-Leffler random variable

Proposition 7.1 Assume that X is a fractional random variable M L(0,5%%) ,
then its moments of fractional order are provided by the expressions

Mmen+1ya = <X(2n+1)a> =0, (74)

Mianya = (XC2) = 2Ka (20— 1)1 (ah)"0*" (75)
with the notation (2n —~ M :=1x3x5x ...(2n—3) x (2n —1).

Proof. The equation (93) is easy to be obtained. Next, we have now to calculate
the integral

<X2na> 2K ( 5ag 2a>$2na(d$)a’

2c

(Xe) = 2K,0%"® / E, (—";—a) z2(dr)* = 2Ko0°"* Loy,
0

We use an integrating by parts to calculate Iz, , and to this end, we set

m2a x2a
u(z) 1= E, (—2—Q) . u¥N(z)=—E, (—-27) z°, (76)
o (Ia)Zn—l—l () _ (pa)\2n
v(z) = n3 @’ v\ (x) = (%)™ (77)
We then have successively
(xre) = 2K.o™ /u(:c)v(o‘)(m)(dx)"‘ = — 2K,0°" /u(a)(x)v(x)(d:r)a
0

= (2n+1 Z ( > "),

therefore the recursion Ioni2 = (2n + 1)(a!)l2, which provides I, = ((2n —
nHm (ah)™.

7.3 Determination of the value of the normalizing constant. This
amounts to determine the value of the integral

_ * _ 2a )&
Ia—/o Eo(-2%)(da) (78)

and this can be done as follows.
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(Step 1) We start from the equality

1o = [ [ Balea™ By o )

@ = [ [ Ea(- (@2 +)°) (@0)2 () (79)
o Jo
(Step 2) On making the change of variable
z=rcosf, y=rsinb,

we obtain easily

/2 o0 oo
(I)* = /0 (d6)® /0 Eo(—r2)r*(dr)* = (1/2) /0 Eo(=r")r*(dr)®.

(80)
(Step 3) A second change of variable u = r? provides successively du = 2rdr
r(dr)® = 27%(du)®. (81)

(Step 4) Substituting this result into (99) yields
2 _ E @ _1_ * e «
1) =(3) 5 [ Balcun)(aw

e ol _
= (5) S [—Ea(—z%)];° = m*27%%al.

(Step 5) We then eventually obtainl, = @WO‘/ 2

Remark that when o — 1 | one obtains the classical result I = /7/2

8. Concluding remarks

First remark. Prospect for future research ;

As we pointed out in the introduction, fractional calculus is getting an increas-
ing audience among scientists, to deal mainly with fractional Brownian motion
on the one hand, and physical processes which are defined in coarse-grained
space, or in porous media, on the other hand. This is with this purpose in mind,
that we have introduced a new concept of probability density of fractional or-
der, and in quite a natural way, we have been so led to generalize the Gaussian
probability by using the Mittag Leffler function.

A concernwhich then comes in mind in quite a natural way, is exactly to exam-
ine what we can do with this fractional Gaussian density in the modeling of sto-
chastic processes. As we know it, one of the basic stochastic processes in the lit-
erature is defined by the partial differential equation d;p(x,t) = 27 020,.p(z, )
of which the solution is

(@.1) 1 . x?
T, )= ——exp{ ——— > ..
P oV 2r P 202t
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Analogously, we are led to consider probability densities in the form

-1
(Valzi=(e/ages2) . 420
o> f(t) 1 2002 fa(Y)
where f(¢) would characterize the process under consideration, and to examine
whether it would be meaningful in the modeling of fractal processes.

Second remark. Quantum probability and fractional probability
In the case when o = 1/2 one has the equality

p(zt) =

2
(P1/2d$1/2) = (P1/2)2d$

which suggest that whilst p; /2(z) is a fractional probability, its square is a prob-
abilipy. In other words, the fractional probability would be exactly a quantum
probability amplitude.

Third remark. Fractional probability and fractional entropy
This fractional probability appears to be quite consistent with the concept of
informational entropy of fractional order which we have introduced in the form

H(X) = = [ p(e) Lnapla))"/* do

where Lngx is the inverse of the Mittag-Lefler defined by the equality z =
E, (Lnax) 9]
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