• 제목/요약/키워드: Mitogen-activated protein kinase (MAPK)

검색결과 478건 처리시간 0.025초

Decursin derivative-004 protect renal cell damage via p38 MAPK inhibition

  • Shin, Seon-Mi;Kim, Hyeon-Ho;Kim, Ik-Hwan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.337.1-337.1
    • /
    • 2002
  • Hypertrophy and the alteration of renal cell growth have been reported as early abnormality in diabetic nephropathy. However, the effects ot high PKCglucose and its action mechanism in renal proximal tubular cell (PTC) have not been elucidated. High glucose condition increases diacyl glycerol (DAG) and activates protein kinase C (PKC) in renal tubular cells. The PKC activates mitogen-activated protein kinases (MAPK), such as extracellular regulated kinase (ERK) and p38 MAPK. (omitted)

  • PDF

Improved immune-enhancing activity of egg white protein ovotransferrin after enzyme hydrolysis

  • Lee, Jae Hoon;Kim, Hyeon Joong;Ahn, Dong Uk;Paik, Hyun-Dong
    • Journal of Animal Science and Technology
    • /
    • 제63권5호
    • /
    • pp.1159-1168
    • /
    • 2021
  • Ovotransferrin (OTF), an egg protein known as transferrin family protein, possess strong antimicrobial and antioxidant activity. This is because OTF has two iron binding sites, so it has a strong metal chelating ability. The present study aimed to evaluate the improved immune-enhancing activities of OTF hydrolysates produced using bromelain, pancreatin, and papain. The effects of OTF hydrolysates on the production and secretion of pro-inflammatory mediators in RAW 264.7 macrophages were confirmed. The production of nitric oxide (NO) was evaluated using Griess reagent and the expression of inducible nitric oxide synthase (iNOS) were evaluated using quantitative real-time polymerase chain reaction (PCR). And the production of pro-inflammatory cytokines (tumor necrosis factor [TNF]-α and interleukin [IL]-6) and the phagocytic activity of macrophages were evaluated using an ELISA assay and neutral red uptake assay, respectively. All OTF hydrolysates enhanced NO production by increasing iNOS mRNA expression. Treating RAW 264.7 macrophages with OTF hydrolysates increased the production of pro-inflammatory cytokines and the phagocytic activity. The production of NO and pro-inflammatory cytokines induced by OTF hydrolysates was inhibited by the addition of specific mitogen-activated protein kinase (MAPK) inhibitors. In conclusion, results indicated that all OTF hydrolysates activated RAW 264.7 macrophages by activating MAPK signaling pathway.

Ginsenoside Rh2(S) induces the differentiation and mineralization of osteoblastic MC3T3-E1 cells through activation of PKD and p38 MAPK pathways

  • Kim, Do-Yeon;Jung, Mi-Song;Park, Young-Guk;Yuan, Hai Dan;Quan, Hai Yan;Chung, Sung-Hyun
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.659-664
    • /
    • 2011
  • As part of the search for biologically active anti-osteoporotic agents that enhance differentiation and mineralization of osteoblastic MC3T3-E1 cells, we identified the ginsenoside Rh2(S), which is an active component in ginseng. Rh2(S) stimulates osteoblastic differentiation and mineralization, as manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and Alizarin Red staining, respectively. Rh2(S) activates p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and Rh2(S)-induced differentiation and mineralization of osteoblastic cells were totally inhibited in the presence of the p38 MAPK inhibitor, SB203580. In addition, pretreatment with Go6976, a protein kinase D (PKD) inhibitor, significantly reversed the Rh2(S)-induced p38 MAPK activation, indicating that PKD might be an upstream kinase for p38 MAPK in MC3T3-E1 cells. Taken together, these results suggest that Rh2(S) induces the differentiation and mineralization of MC3T3-E1 cells through activation of PKD/p38 MAPK signaling pathways, and these findings provide a molecular basis for the osteogenic effect of Rh2(S).

Triptolide Inhibits the Proliferation of Immortalized HT22 Hippocampal Cells Via Persistent Activation of Extracellular Signal-Regulated Kinase-1/2 by Down-Regulating Mitogen-Activated Protein Kinase Phosphatase-1 Expression

  • Koo, Hee-Sang;Kang, Sung-Don;Lee, Ju-Hwan;Kim, Nam-Ho;Chung, Hun-Taeg;Pae, Hyun-Ock
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권4호
    • /
    • pp.389-396
    • /
    • 2009
  • Objective : Triptolide (TP) has been reported to suppress the expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), of which main function is to inactivate the extracellular signal-regulated kinase-1/2 (ERK-1/2), the p38 MAPK and the c-Jun N-terminal kinase-1/2 (JNK-1/2), and to exert antiproliferative and pro-apoptotic activities. However, the mechanisms underlying antiproliferative and pro-apoptotic activities of TP are not fully understood. The purpose of this study was to examine whether the down-regulation of MKP-1 expression by TP would account for antiproliferative activity of TP in immortalized HT22 hippocampal cells. Methods : MKP-1 expression and MAPK phosphorylation were analyzed by Western blot. Cell proliferation was assessed by $^3H$-thymidine incorporation. Small interfering RNA (siRNA) against MKP-1, vanadate (a phosphatase inhibitor), U0126 (a specific inhibitor for ERK-1/2), SB203580 (a specific inhibitor for p38 MAPK), and SP600125 (a specific inhibitor for JNK-1/2) were employed to evaluate a possible mechanism of antiproliferative action of TP. Results : At its non-cytotoxic dose, TP suppressed MKP-1 expression, reduced cell growth, and induced persistent ERK-1/2 activation. Similar growth inhibition and ERK-1/2 activation were observed when MKP-1 expression was blocked by MKP-1 siRNA and its activity was inhibited by vanadate. The antiproliferative effects of TP, MKP-1 siRNA, and vanadate were significantly abolished by U0126, but not by SB203580 or SP600125. Conclusion : Our findings suggest that TP inhibits the growth of immortalized HT22 hippocampal cells via persistent ERK-1/2 activation by suppressing MKP-1 expression. Additionally, this study provides evidence supporting that MKP-1 may play an important role in regulation of neuronal cell growth.

Differential Alterations of Endotoxin-induced Cytokine Expression and Mitogen-activated Protein Kinase Activation by Mercury in Mouse Kidney

  • Kim, Sang-Hyun;Kim, Dae-Keun;Shin, Tae-Yong;Choi, Cheol-Hee
    • Toxicological Research
    • /
    • 제20권3호
    • /
    • pp.233-239
    • /
    • 2004
  • The present study was designed to determine the impact of mercury on endotoxin-induced inflammatory cytokine expression and corresponding signal transduction in mouse kidney. Male BALB/c mice were exposed continuously to 0, 0.3, 1.5, 7.5, or 37.5 ppm of mercury in drink-ing water for 14 days and at the end of the treatment period, lipopolysaccharide (LPS, 0.5 mg/kg) was injected intraperitoneally 2 h prior to euthanasia. The doses of mercury and LPS did not cause hepatotoxicity or renal toxicity as indicated by unaltered plasma alanine aminotransferase and aspartate aminotransferase levels, and terminal UTP nucleotide end-labeling assay from kidney, respectively. Mercury decreased kidney glutathione (GSH) and with LPS, it additively decreased GSH. Mercury activated p38 mitogen-activated protein kinase (MAPK) and additively increased LPS-induced p38 MAPK phosphorylation. In contrast, mercury inhibited LPS-induced activation of extra-cellular signal-regulated kinase (ERK) but had no effect alone. Mercury increased the gene expression of tumor necrosis factor $\alpha$ (TN F$\alpha$) and potentiated LPS-induced TNF$\alpha$ expression. Mercury did not affect LPS-induced interleukin-1$\beta$ (IL-1$\beta$) expression but decreased LPS-induced IL-6 expression. These results suggest that low levels of mercury might augment LPS-induced TNF$\alpha$ expression by altering GSH and p38 MAPK. Mercury modulates LPS-induced p38 and ERK activation, and downstream TNF$\alpha$ and IL-6 expression in kidney, respectively.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • 제49권8호
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

p38 Mitogen-Activated Protein Kinase and Extracellular Signal-Regulated Kinase Regulate Nitric Oxide Production and Inflammatory Cytokine Expression in Raw Cells

  • Choi, Cheol-Hee;Kim, Sang-Hyun
    • IMMUNE NETWORK
    • /
    • 제5권1호
    • /
    • pp.30-35
    • /
    • 2005
  • Background: p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling are thought to have critical role in lipopolysaccharide (LPS)-induced immune response but the molecular mechanism underlying the induction of these signaling are not clear. Methods: Specific inhibitors for p38, SB203580, and for ERK, PD98059 were used. Cells were stimulated by LPS with or without specific MAPK inhibitors. Results: LPS activated inducible nitric oxide synthase (iNOS), subsequent NO productions, and pro-inflammatory cytokine gene expressions (TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and IL-12). Treatment of both SB203580 and PD98059 decreased LPS-induced NO productions. Concomitant decreases in the expression of iNOS mRNA and protein were detected. SB203580 and PD98059 decreased LPS-induced gene expression of IL-$1{\beta}$ and IL-6. SB203580 increased LPS-induced expression of TNF-${\alpha}$ and IL-12, and reactive oxygen species production, but PD98059 had no effect. Conclusion: These results indicate that both p38 and ERK pathways are involved in LPS-stimulated NO synthesis, and expression of IL-$1{\beta}$ and IL-6. p38 signaling pathways are involved in LPS-induced TNF-${\alpha}$ and IL-12, and reactive oxygen species plays an important role in these signaling in macrophage.

Endothelin-1-유도 근수축에 관여하는 부활효소의 활성과 물리치료의 상관성 (The Activity of Protein Kinases on the Endothelin-1-induced Muscle Contraction and the relationship of Physical Therapy)

  • 김미선;김일현;황병용;김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제20권3호
    • /
    • pp.53-59
    • /
    • 2008
  • Purpose: The non-receptor-type protein tyrosine kinase Syk (636 amino acids, 72 kDa) is ubiquitously expressed in hematopoietic stem cells and has been widely studied as a regulator and effector of B cell receptor signaling that occurs in processes such as differentiation, proliferation and apoptosis. However, the mechanism relating Syk and p38 mitogen-activated protein kinases (p38MAPK) by endothelin-1 (ET-1, 21 amino acids) stimulation in muscle cells, especially in the volume-dependent hypertensive state, remains unclear. Methods: In this study, we investigated the relationship between Syk and p38MAPK for isometric contraction and enzymatic activity by ET-1 from rat aortic smooth muscle cells and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive state rats (ADHR). Results: The systolic blood pressure was significantly increased in ADHR than in a control group of animals. ET-1 induced isometric contraction and phosphorylation of p38MAPK, which was increased in muscle strips from ADHR. Increased vasoconstriction and phosphorylation of p38MAPK induced by treatment with 30 nM ET-1 were inhibited by the use of 10${\mu}M$ SB203580, an inhibitor of p38MAPK from ADHR. Furthermore, ET-1 induced isometric contraction and phosphorylation of Syk and p38MAPK, which were increased in the aortic smooth muscle cells. Increased tension and phosphorylation of Syk and p38MAPK induced by ET-1 were inhibited by SB203580 from rat aortic smooth muscle cells. Conclusion: These results, suggest that the Syk activity affects ET-1-induced contraction through p38MAPK in smooth muscle cells and that the same pathway directly or indirectly is associated with volume dependent hypertension. The findings suggest the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

The MAP Kinase Kinase Gene AbSte7 Regulates Multiple Aspects of Alternaria brassicicola Pathogenesis

  • Lu, Kai;Zhang, Min;Yang, Ran;Zhang, Min;Guo, Qinjun;Baek, Kwang-Hyun;Xu, Houjuan
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.91-99
    • /
    • 2019
  • Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ${\Delta}AbSte7$ mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ${\Delta}AbSte7$ mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell walldegrading enzymes, including cellulase, ${\beta}$-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.

Mitogen-activated Protein Kinases in the Development of Normal and Diseased Kidneys

  • Awazu, Midori
    • Childhood Kidney Diseases
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2017
  • Mitogen-activated protein kinases (MAPKs) play important roles in various cellular functions including proliferation, differentiation, and apoptosis. We showed that MAPKs are developmentally regulated in the rat kidney. p38 MAPK (p38) and extracellular signal-regulated kinase (ERK) were strongly expressed in the fetal kidney, whereas c-Jun N-terminal kinase (JNK) was detected predominantly in the adult kidney. The inhibition of p38 or ERK in organ culture resulted in reduced nephron formation with or without reduced kidney size. On the other hand, persistent fetal expression pattern of MAPKs, i.e., upregulation of p38 and ERK and downregulation of JNK, was observed in the cyst epithelium of human renal dysplasia, ovine fetal obstructive uropathy, and pcy mice, a model of polycystic kidney disease. Furthermore, activated p38 and ERK induced by cyclic stretch mediated proliferation and $TGF-{\beta}1$ expression in ureteric bud cells, probably leading to cyst formation and dysplastic changes. Inhibition of ERK slowed the disease progression in pcy mice. Finally, ERK and p38 were inactivated in the early embryonic kidney subjected to maternal nutrient restriction, characterized by reduced ureteric branching and nephron number. Thus, MAPKs mediate the development of normal and diseased kidney. Their modulation may result in novel therapeutic strategies against developmental abnormalities of the kidney.