• 제목/요약/키워드: Mitochondrial medicine

검색결과 1,114건 처리시간 0.025초

Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle

  • Heo, Jun-Won;No, Mi-Hyun;Park, Dong-Ho;Kang, Ju-Hee;Seo, Dae Yun;Han, Jin;Neufer, P. Darrell;Kwak, Hyo-Bum
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.567-577
    • /
    • 2017
  • Obesity is known to induce inhibition of glucose uptake, reduction of lipid metabolism, and progressive loss of skeletal muscle function, which are all associated with mitochondrial dysfunction in skeletal muscle. Mitochondria are dynamic organelles that regulate cellular metabolism and bioenergetics, including ATP production via oxidative phosphorylation. Due to these critical roles of mitochondria, mitochondrial dysfunction results in various diseases such as obesity and type 2 diabetes. Obesity is associated with impairment of mitochondrial function (e.g., decrease in $O_2$ respiration and increase in oxidative stress) in skeletal muscle. The balance between mitochondrial fusion and fission is critical to maintain mitochondrial homeostasis in skeletal muscle. Obesity impairs mitochondrial dynamics, leading to an unbalance between fusion and fission by favorably shifting fission or reducing fusion proteins. Mitophagy is the catabolic process of damaged or unnecessary mitochondria. Obesity reduces mitochondrial biogenesis in skeletal muscle and increases accumulation of dysfunctional cellular organelles, suggesting that mitophagy does not work properly in obesity. Mitochondrial dysfunction and oxidative stress are reported to trigger apoptosis, and mitochondrial apoptosis is induced by obesity in skeletal muscle. It is well known that exercise is the most effective intervention to protect against obesity. Although the cellular and molecular mechanisms by which exercise protects against obesity-induced mitochondrial dysfunction in skeletal muscle are not clearly elucidated, exercise training attenuates mitochondrial dysfunction, allows mitochondria to maintain the balance between mitochondrial dynamics and mitophagy, and reduces apoptotic signaling in obese skeletal muscle.

Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

  • Sung, Soon Ki;Woo, Jae Suk;Kim, Young Ha;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제59권3호
    • /
    • pp.259-268
    • /
    • 2016
  • Objective : Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods : HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results : AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion : Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism.

Neonatal Mitochondrial Respiratory Chain Defect and Vaginal Embryonal Rhabdomyosarcoma: Possibility of Oncogenesis?

  • ;;;;;이영목
    • 대한유전성대사질환학회지
    • /
    • 제15권1호
    • /
    • pp.25-28
    • /
    • 2015
  • Mitochondrial disorders are rare metabolic diseases. They often present during neonatal period but with nonspecific clinical features such as feeding difficulties, failure to thrive, and seizures. Mitochondrial defects have also known to be associated with neurological disorders, as well as cancers. We report the first case of neonatal mitochondrial respiratory chain defect with sarcoma botryoides confirmed by pathologic diagnosis, suggesting another possible link between mitochondrial dysfunction and cancer.

Mitochondrial calcium uniporter inhibition attenuates mouse bone marrow-derived mast cell degranulation induced by beta-1,3-glucan

  • Dang, Van Cuong;Kim, Hyoung Kyu;Marquez, Jubert;Kim, Nari;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권2호
    • /
    • pp.213-220
    • /
    • 2016
  • Mast cells are primary mediators of allergic inflammation. Beta-1,3-glucan (BG) protects against infection and shock by activating immune cells. Activation of the BG receptor induces an increase in intracellular $Ca^{2+}$, which may induce exocytosis. However, little is known about the precise mechanisms underlying BG activation of immune cells and the possible role of mitochondria in this process. The present study examined whether BG induced mast cell degranulation, and evaluated the role of calcium transients during mast cell activation. Our investigation focused on the role of the mitochondrial calcium uniporter (MCU) in BG-induced degranulation. Black mouse (C57) bone marrow-derived mast cells were stimulated with $0.5{\mu}g/ml$ BG, $100{\mu}g/ml$ peptidoglycan (PGN), or $10{\mu}M$ A23187 (calcium ionophore), and dynamic changes in cytosolic and mitochondrial calcium and membrane potential were monitored. BG-induced mast cell degranulation occurred in a time-dependent manner, and was significantly reduced under calcium-free conditions. Ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, significantly reduced mast cell degranulation induced by BG, PGN, and A23187. These results suggest that the mitochondrial $Ca^{2+}$ uniporter has an important regulatory role in BG-induced mast cell degranulation.

Effects of cisplatin on mitochondrial function and autophagy-related proteins in skeletal muscle of rats

  • Seo, Dae Yun;Bae, Jun Hyun;Zhang, Didi;Song, Wook;Kwak, Hyo-Bum;Heo, Jun-Won;Jung, Su-Jeen;Yun, Hyeong Rok;Kim, Tae Nyun;Lee, Sang Ho;Kim, Amy Hyein;Jeong, Dae Hoon;Kim, Hyoung Kyu;Han, Jin
    • BMB Reports
    • /
    • 제54권11호
    • /
    • pp.575-580
    • /
    • 2021
  • Cisplatin is widely known as an anti-cancer drug. However, the effects of cisplatin on mitochondrial function and autophagy-related proteins levels in the skeletal muscle are unclear. The purpose of this study was to investigate the effect of different doses of cisplatin on mitochondrial function and autophagy-related protein levels in the skeletal muscle of rats. Eight-week-old male Wistar rats (n = 24) were assigned to one of three groups; the first group was administered a saline placebo (CON, n = 10), and the second and third groups were given 0.1 mg/kg body weight (BW) (n = 6), and 0.5 mg/kg BW (n = 8) of cisplatin, respectively. The group that had been administered 0.5 mg cisplatin exhibited a reduced BW, skeletal muscle tissue weight, and mitochondrial function and upregulated levels of autophagy-related proteins, including LC3II, Beclin 1, and BNIP3. Moreover, this group had a high LC3 II/I ratio in the skeletal muscle; i.e., the administration of a high dose of cisplatin decreased the muscle mass and mitochondrial function and increased the levels of autophagy-related proteins. These results, thus, suggest that reducing mitochondrial dysfunction and autophagy pathways may be important for preventing skeletal muscle atrophy following cisplatin administration.

microRNA-200a-3p enhances mitochondrial elongation by targeting mitochondrial fission factor

  • Lee, Heejin;Tak, Hyosun;Park, So Jung;Jo, Yoon Kyung;Cho, Dong Hyung;Lee, Eun Kyung
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.214-219
    • /
    • 2017
  • Mitochondria play pivotal roles in the ATP production, apoptosis and generation of reactive oxygen species. Although dynamic regulation of mitochondria morphology is a critical step to maintain cellular homeostasis, the regulatory mechanisms are not yet fully elucidated. In this study, we identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting mitochondrial fission factor (MFF). We demonstrated that the ectopic expression of miR-200a-3p enhanced mitochondrial elongation, mitochondrial ATP synthesis, mitochondrial membrane potential and oxygen consumption rate. These results indicate that miR-200a-3p positively regulates mitochondrial elongation by downregulating MFF expression.

Complete Sequence of the Mitochondrial Genome of Spirometra ranarum: Comparison with S. erinaceieuropaei and S. decipiens

  • Jeon, Hyeong-Kyu;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kang, Yeseul;Bia, Mohammed Mebarek;Lee, Sang-Hwa;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • 제57권1호
    • /
    • pp.55-60
    • /
    • 2019
  • This study was undertaken to determine the complete mitochondrial DNA sequence and structure of the mitochondrial genome of Spirometra ranarum, and to compare it with those of S. erinaceieuropaei and S. decipiens. The aim of this study was to provide information of the species level taxonomy of Spirometra spp. using the mitochondrial genomes of 3 Spirometra tapeworms. The S. ranarum isolate originated from Myanmar. The mitochondrial genome sequence of S. ranarum was compared with that of S. erinaceieuropaei (GenBank no. KJ599680) and S. decipiens (GenBank no. KJ599679). The complete mtDNA sequence of S. ranarum comprised 13,644 bp. The S. ranarum mt genome contained 36 genes comprising 12 protein-coding genes, 22 tRNAs and 2 rRNAs. The mt genome lacked the atp8 gene, as found for other cestodes. All genes in the S. ranarum mitochondrial genome are transcribed in the same direction and arranged in the same relative position with respect to gene loci as found for S. erinaceieuropaei and S. decipiens mt genomes. The overall nucleotide sequence divergence of 12 protein-coding genes between S. ranarum and S. decipiens differed by 1.5%, and 100% sequence similarity was found in the cox2 and nad6 genes, while the DNA sequence divergence of the cox1, nad1, and nad4 genes of S. ranarum and S. decipiens was 2.2%, 2.1%, and 2.6%, respectively.

C-reactive protein accelerates DRP1-mediated mitochondrial fission by modulating ERK1/2-YAP signaling in cardiomyocytes

  • Suyeon Jin;Chan Joo Lee;Gibbeum Lim;Sungha Park;Sang-Hak Lee;Ji Hyung Chung;Jaewon Oh;Seok-Min Kang
    • BMB Reports
    • /
    • 제56권12호
    • /
    • pp.663-668
    • /
    • 2023
  • C-reactive protein (CRP) is an inflammatory marker and risk factor for atherosclerosis and cardiovascular diseases. However, the mechanism through which CRP induces myocardial damage remains unclear. This study aimed to determine how CRP damages cardiomyocytes via the change of mitochondrial dynamics and whether survivin, an anti-apoptotic protein, exerts a cardioprotective effect in this process. We treated H9c2 cardiomyocytes with CRP and found increased intracellular ROS production and shortened mitochondrial length. CRP treatment phosphorylated ERK1/2 and promoted increased expression, phosphorylation, and translocation of DRP1, a mitochondrial fission-related protein, from the cytoplasm to the mitochondria. The expression of mitophagy proteins PINK1 and PARK2 was also increased by CRP. YAP, a transcriptional regulator of PINK1 and PARK2, was also increased by CRP. Knockdown of YAP prevented CRP-induced increases in DRP1, PINK1, and PARK2. Furthermore, CRP-induced changes in the expression of DRP1 and increases in YAP, PINK1, and PARK2 were inhibited by ERK1/2 inhibition, suggesting that ERK1/2 signaling is involved in CRP-induced mitochondrial fission. We treated H9c2 cardiomyocytes with a recombinant TAT-survivin protein before CRP treatment, which reduced CRP-induced ROS accumulation and reduced mitochondrial fission. CRP-induced activation of ERK1/2 and increases in the expression and activity of YAP and its downstream mitochondrial proteins were inhibited by TAT-survivin. This study shows that mitochondrial fission occurs during CRP-induced cardiomyocyte damage and that the ERK1/2-YAP axis is involved in this process, and identifies that survivin alters these mechanisms to prevent CRP-induced mitochondrial damage.

A Computational Model of Cytosolic and Mitochondrial [$Ca^{2+}$] in Paced Rat Ventricular Myocytes

  • Youm, Jae-Boum;Choi, Seong-Woo;Jang, Chang-Han;Kim, Hyoung-Kyu;Leem, Chae-Hun;Kim, Na-Ri;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권4호
    • /
    • pp.217-239
    • /
    • 2011
  • We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial $Ca^{2+}$ transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [$Ca^{2+}]$ bigger in mitochondria as well as in cytosol. As L-type $Ca^{2+}$ channel has key influence on the amplitude of $Ca^{2+}$ -induced $Ca^{2+}$ release, the relation between stimulus frequency and the amplitude of $Ca^{2+}$ transients was examined under the low density (1/10 of control) of L-type $Ca^{2+}$ channel in model simulation, where the relation was reversed. In experiment, block of $Ca^{2+}$ uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial $Ca^{2+}$ transients, while it failed to affect the cytosolic $Ca^{2+}$ transients. In computer simulation, the amplitude of cytosolic $Ca^{2+}$ transients was not affected by removal of $Ca^{2+}$ uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [$Ca^{2+}$] in cytosol and eventually abolished the $Ca^{2+}$ transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type $Ca^{2+}$ channel to total transsarcolemmal $Ca^{2+}$ flux could determine whether the cytosolic $Ca^{2+}$ transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic $Ca^{2+}$ affects mitochondrial $Ca^{2+}$ in a beat-to-beat manner, however, removal of $Ca^{2+}$ influx mechanism into mitochondria does not affect the amplitude of cytosolic $Ca^{2+}$ transients.

Differential Activation of Ras/Raf/MAPK Pathway between Heart and Cerebral Artery in Isoproterenol-induced Cardiac Hypertrophy

  • Kim, Hyun-Ju;Kim, Na-Ri;Joo, Hyun;Youm, Jae-Boum;Park, Won-Sun;Warda, Mohamed;Kang, Sung-Hyun;Thu, Vu-Thi;Khoa, Tran-Minh;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권5호
    • /
    • pp.299-304
    • /
    • 2005
  • Cardiac hypertrophy contributes an increased risk to major cerebrovascular events. However, the molecular mechanisms underlying cerebrovascular dysfunction during cardiac hypertrophy have not yet been characterized. In the present study, we examined the molecular mechanism of isoproterenol (ISO)-evoked activation of Ras/Raf/MAPK pathways as well as PKA activity in cerebral artery of rabbits, and we also studied whether the activations of these signaling pathways were altered in cerebral artery, during ISO-induced cardiac hypertrophy compared to heart itself. The results show that the mRNA level of c-fos (not c-jun and c-myc) in heart and these genes in cerebral artery were considerably increased during cardiac hypertrophy. These results that the PKA activity and activations of Ras/Raf/ERK cascade as well as c-fos expression in rabbit heart during cardiac hypertrophy were consistent with previous reports. Interestingly, however, we also showed a novel finding that the decreased PKA activity might have differential effects on Ras and Raf expression in cerebral artery during cardiac hypertrophy. In conclusion, there are differences in molecular mechanisms between heart and cerebral artery during cardiac hypertrophy when stimulated with β2 adrenoreceptor (AR), suggesting a possible mechanism underlying cerebrovascular dysfunction during cardiac hypertrophy.