Browse > Article
http://dx.doi.org/10.4196/kjpp.2011.15.4.217

A Computational Model of Cytosolic and Mitochondrial [$Ca^{2+}$] in Paced Rat Ventricular Myocytes  

Youm, Jae-Boum (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Choi, Seong-Woo (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Jang, Chang-Han (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Kim, Hyoung-Kyu (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Leem, Chae-Hun (Department of Physiology and the Institute for Calcium Research, University of Ulsan College of Medicine)
Kim, Na-Ri (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Han, Jin (National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.15, no.4, 2011 , pp. 217-239 More about this Journal
Abstract
We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial $Ca^{2+}$ transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [$Ca^{2+}]$ bigger in mitochondria as well as in cytosol. As L-type $Ca^{2+}$ channel has key influence on the amplitude of $Ca^{2+}$ -induced $Ca^{2+}$ release, the relation between stimulus frequency and the amplitude of $Ca^{2+}$ transients was examined under the low density (1/10 of control) of L-type $Ca^{2+}$ channel in model simulation, where the relation was reversed. In experiment, block of $Ca^{2+}$ uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial $Ca^{2+}$ transients, while it failed to affect the cytosolic $Ca^{2+}$ transients. In computer simulation, the amplitude of cytosolic $Ca^{2+}$ transients was not affected by removal of $Ca^{2+}$ uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [$Ca^{2+}$] in cytosol and eventually abolished the $Ca^{2+}$ transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type $Ca^{2+}$ channel to total transsarcolemmal $Ca^{2+}$ flux could determine whether the cytosolic $Ca^{2+}$ transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic $Ca^{2+}$ affects mitochondrial $Ca^{2+}$ in a beat-to-beat manner, however, removal of $Ca^{2+}$ influx mechanism into mitochondria does not affect the amplitude of cytosolic $Ca^{2+}$ transients.
Keywords
Mitochondria; $Ca^{2+}$ transient; Rat ventricular myocytes; Computational model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Vay L, Hernandez-SanMiguel E, Lobaton CD, Moreno A, Montero M, Alvarez J. Mitochondrial free [$Ca^{2+}$] levels and the permeability transition. Cell Calcium. 2009;45:243-250.   DOI   ScienceOn
2 Hoffman BF, Kelly JJ Jr. Effects of rate and rhythm on contraction of rat papillary muscle. Am J Physiol. 1959;197: 1199-1204.
3 Kort AA, Lakatta EG. Spontaneous sarcoplasmic reticulum calcium release in rat and rabbit cardiac muscle: relation to transient and rested-state twitch tension. Circ Res. 1988;63: 969-979.   DOI   ScienceOn
4 Shim EB, Leem CH, Abe Y, Noma A. A new multi-scale simulation model of the circulation: from cells to system. Philos Transact A Math Phys Eng Sci. 2006;364:1483-1500.   DOI   ScienceOn
5 Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O'Rourke B. Elevated cytosolic $Na^{+}$ decreases mitochondrial $Ca^{2+}$ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res. 2006;99:172-182.   DOI   ScienceOn
6 Robert V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F, Pozzan T. Beat-to-beat oscillations of mitochondrial [$Ca^{2+}$] in cardiac cells. EMBO J. 2001;20:4998-5007.   DOI
7 Griffiths EJ, Wei SK, Haigney MC, Ocampo CJ, Stern MD, Silverman HS. Inhibition of mitochondrial calcium efflux by clonazepam in intact single rat cardiomyocytes and effects on NADH production. Cell Calcium. 1997;21:321-329.   DOI   ScienceOn
8 Bassani RA, Bassani JW, Bers DM. Mitochondrial and sarcolemmal $Ca^{2+}$ transport reduce$ [$Ca^{2+}$]_i$ during caffeine contractures in rabbit cardiac myocytes. J Physiol. 1992;453: 591-608.   DOI
9 Negroni JA, Lascano EC. A cardiac muscle model relating sarcomere dynamics to calcium kinetics. J Mol Cell Cardiol. 1996;28:915-929.
10 Magnus G, Keizer J. Minimal model of beta-cell mitochondrial $Ca^{2+}$ handling. Am J Physiol. 1997;273:C717-733.   DOI
11 Nguyen MH, Dudycha SJ, Jafri MS. Effect of $Ca^{2+}$ on cardiac mitochondrial energy production is modulated by $Na^{+}$ and $H^{+}$ dynamics. Am J Physiol Cell Physiol. 2007;292:C2004-2020.   DOI   ScienceOn
12 Jung DW, Apel LM, Brierley GP. Transmembrane gradients of free $Na^{+}$ in isolated heart mitochondria estimated using a fluorescent probe. Am J Physiol. 1992;262:C1047-1055.   DOI
13 de la Fuente S, Montenegro P, Fonteriz RI, Moreno A, Lobatón CD, Montero M, Alvarez J. The dynamics of mitochondrial $Ca^{2+}$ fluxes. Biochim Biophys Acta. 2010;1797:1727-1735.   DOI   ScienceOn
14 Linz KW, Meyer R. Control of L-type calcium current during the action potential of guinea-pig ventricular myocytes. J Physiol. 1998;513:425-442.   DOI   ScienceOn
15 Koch-Weser J, Blinks JR. The influence of the interval between beats on myocardial contractility. Pharmacol Rev. 1963;15: 601-652.
16 Capogrossi MC, Kort AA, Spurgeon HA, Lakatta EG. Single adult rabbit and rat cardiac myocytes retain the $Ca^{2+}$- and species-dependent systolic and diastolic contractile properties of intact muscle. J Gen Physiol. 1986;88:589-613.   DOI   ScienceOn
17 Borzak S, Murphy S, Marsh JD. Mechanisms of rate staircase in rat ventricular cells. Am J Physiol. 1991;260:H884-892.
18 Frampton JE, Orchard CH, Boyett MR. Diastolic, systolic and sarcoplasmic reticulum [$Ca^{2+}$] during inotropic interventions in isolated rat myocytes. J Physiol. 1991;437:351-375.   DOI
19 Clark RB, Bouchard RA, Salinas-Stefanon E, Sanchez-Chapula J, Giles WR. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc Res. 1993;27: 1795-1799.   DOI   ScienceOn
20 Reed KC, Bygrave FL. The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red. Biochem J. 1974;140:143-155.   DOI
21 Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990;258:C755-786.   DOI
22 Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994;74:1071-1096.   DOI   ScienceOn
23 Brown AM, Lee KS, Powell T. Sodium current in single rat heart muscle cells. J Physiol. 1981;318:479-500.   DOI
24 Youm JB, Han J, Kim N, Zhang YH, Kim E, Joo H, Hun Leem C, Joon Kim S, Cha KA, Earm YE. Role of stretch-activated channels on the stretch-induced changes of rat atrial myocytes. Prog Biophys Mol Biol. 2006;90:186-206.   DOI   ScienceOn
25 Bogdanov KY, Ziman BD, Spurgeon HA, Lakatta EG. L- and T-type calcium currents differ in finch and rat ventricular cardiomyocytes. J Mol Cell Cardiol. 1995;27:2581-2593.   DOI   ScienceOn
26 Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999;399:159-162.   DOI   ScienceOn
27 Sun L, Fan JS, Clark JW, Palade PT. A model of the L-type $Ca^{2+}$ channel in rat ventricular myocytes: ion selectivity and inactivation mechanisms. J Physiol. 2000;529:139-158.   DOI   ScienceOn
28 Coulombe A, Lefèvre IA, Baro I, Coraboeuf E. Barium- and calcium-permeable channels open at negative membrane potentials in rat ventricular myocytes. J Membr Biol. 1989; 111:57-67.   DOI   ScienceOn
29 Wang SY, Clague JR, Langer GA. Increase in calcium leak channel activity by metabolic inhibition or hydrogen peroxide in rat ventricular myocytes and its inhibition by polycation. J Mol Cell Cardiol. 1995;27:211-222.   DOI   ScienceOn
30 Bers DM. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. Am J Physiol. 1985;248:H366-381.
31 Dibb KM, Eisner DA, Trafford AW. Regulation of systolic $[$Ca^{2+}$]_i$ and cellular $Ca^{2+}$ flux balance in rat ventricular myocytes by SR $Ca^{2+}$, L-type $Ca^{2+}$ current and diastolic $[$Ca^{2+}$]_i$. J Physiol. 2007;585:579-592.   DOI   ScienceOn
32 Harrison SM, McCall E, Boyett MR. The relationship between contraction and intracellular sodium in rat and guinea-pig ventricular myocytes. J Physiol. 1992;449:517-550.   DOI
33 Niederer SA, Smith NP. A mathematical model of the slow force response to stretch in rat ventricular myocytes. Biophys J. 2007;92:4030-4044.   DOI   ScienceOn
34 Katsube Y, Yokoshiki H, Nguyen L, Yamamoto M, Sperelakis N. L-type $Ca^{2+}$ currents in ventricular myocytes from neonatal and adult rats. Can J Physiol Pharmacol. 1998;76:873-881.   DOI
35 Nie A, Meng Z. Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes. Arch Biochem Biophys. 2005;442:187-195.   DOI   ScienceOn
36 Berlin JR, Bassani JW, Bers DM. Intrinsic cytosolic calcium buffering properties of single rat cardiac myocytes. Biophys J. 1994;67:1775-1787.   DOI   ScienceOn
37 Page E. Quantitative ultrastructural analysis in cardiac membrane physiology. Am J Physiol. 1978;235:C147-158.
38 Shimoni Y, Severson D, Giles W. Thyroid status and diabetes modulate regional differences in potassium currents in rat ventricle. J Physiol. 1995;488:673-688.   DOI
39 Apkon M, Nerbonne JM. Characterization of two distinct depolarization-activated $K^{+}$ currents in isolated adult rat ventricular myocytes. J Gen Physiol. 1991;97:973-1011.   DOI   ScienceOn
40 Wettwer E, Amos G, Gath J, Zerkowski HR, Reidemeister JC, Ravens U. Transient outward current in human and rat ventricular myocytes. Cardiovasc Res. 1993;27:1662-1669.   DOI   ScienceOn
41 Volk T, Nguyen TH, Schultz JH, Faulhaber J, Ehmke H. Regional alterations of repolarizing $K^{+}$ currents among the left ventricular free wall of rats with ascending aortic stenosis. J Physiol. 2001;530:443-455.   DOI   ScienceOn
42 Pond AL, Scheve BK, Benedict AT, Petrecca K, Van Wagoner DR, Shrier A, Nerbonne JM. Expression of distinct ERG proteins in rat, mouse, and human heart. Relation to functional IKr channels. J Biol Chem. 2000;275:5997-6006.   DOI
43 Sakmann B, Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol. 1984;347:641-657.   DOI
44 Fauconnier J, Lacampagne A, Rauzier JM, Vassort G, Richard S. $Ca^{2+}$-dependent reduction of $I_{K1}$ in rat ventricular cells: a novel paradigm for arrhythmia in heart failure? Cardiovasc Res. 2005;68:204-212.   DOI   ScienceOn
45 Nichols CG, Lederer WJ. The regulation of ATP-sensitive $K^{+}$ channel activity in intact and permeabilized rat ventricular myocytes. J Physiol. 1990;423:91-110.   DOI
46 Trollinger DR, Cascio WE, Lemasters JJ. Mitochondrial calcium transients in adult rabbit cardiac myocytes: inhibition by ruthenium red and artifacts caused by lysosomal loading of $Ca^{2+}$- indicating fluorophores. Biophys J. 2000;79:39-50.   DOI   ScienceOn
47 McCormack JG, Halestrap AP, Denton RM. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev. 1990;70:391-425.   DOI
48 Hansford RG. Dehydrogenase activation by $Ca^{2+}$ in cells and tissues. J Bioenerg Biomembr. 1991;23:823-854.   DOI   ScienceOn
49 Brandes R, Bers DM. Simultaneous measurements of mitochondrial NADH and $Ca^{2+}$ during increased work in intact rat heart trabeculae. Biophys J. 2002;83:587-604.   DOI   ScienceOn
50 Andrienko TN, Picht E, Bers DM. Mitochondrial free calcium regulation during sarcoplasmic reticulum calcium release in rat cardiac myocytes. J Mol Cell Cardiol. 2009;46:1027-1036.   DOI   ScienceOn
51 Sedova M, Dedkova EN, Blatter LA. Integration of rapid cytosolic $Ca^{2+}$ signals by mitochondria in cat ventricular myocytes. Am J Physiol Cell Physiol. 2006;291:C840-850.   DOI
52 Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A. Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn J Physiol. 2003;53:105-123.   DOI   ScienceOn
53 Cortassa S, Aon MA, O'Rourke B, Jacques R, Tseng HJ, Marbán E, Winslow RL. A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J. 2006;91:1564-1589.   DOI   ScienceOn
54 Bernardi P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev. 1999;79: 1127-1155.   DOI
55 Pandit SV, Clark RB, Giles WR, Demir SS. A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys J. 2001;81:3029-3051.   DOI   ScienceOn
56 Kang SH, Park WS, Kim N, Youm JB, Warda M, Ko JH, Ko EA, Han J. Mitochondrial $Ca^{2+}$-activated $K^{+}$ channels more efficiently reduce mitochondrial $Ca^{2+}$ overload in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2007;293: H307-313.   DOI   ScienceOn
57 Wan B, Doumen C, Duszynski J, Salama G, Vary TC, LaNoue KF. Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am J Physiol. 1993;265:H453-460.   DOI
58 Youm JB, Jo SH, Leem CH, Ho WK, Earm YE. Role of stretch-activated channels in stretch-induced changes of electrical activity in rat atrial myocytes. Korean J Physiol Pharmacol. 2004;8:33-41.
59 Sakamoto J, Tonomura Y. Order of release of ADP and Pi from phosphoenzyme with bound ADP of $Ca^{2+}$-dependent ATPase from sarcoplasmic reticulum and of $Na^{+}$, $K^{+}$-dependent ATPase studied by ADP-inhibition patterns. J Biochem. 1980;87: 1721-1727.   DOI
60 Jensen AM, Sorensen TL, Olesen C, Moller JV, Nissen P. Modulatory and catalytic modes of ATP binding by the calcium pump. EMBO J. 2006;25:2305-2314.   DOI   ScienceOn
61 Territo PR, Mootha VK, French SA, Balaban RS. $Ca^{2+}$ activation of heart mitochondrial oxidative phosphorylation: role of the $F_{0}$/$F_{1}$-ATPase. Am J Physiol Cell Physiol. 2000;278:C423-435.   DOI
62 Gibbs CL. Cardiac energetics. Physiol Rev. 1978;58:174-254.   DOI
63 Weiss JN, Lamp ST. Glycolysis preferentially inhibits ATPsensitive $K^{+}$ channels in isolated guinea pig cardiac myocytes. Science. 1987;238:67-69.   DOI
64 Jeremy RW, Koretsune Y, Marban E, Becker LC. Relation between glycolysis and calcium homeostasis in postischemic myocardium. Circ Res. 1992;70:1180-1190.   DOI   ScienceOn
65 Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093-1129.   DOI   ScienceOn
66 Suga H. Ventricular energetics. Physiol Rev. 1990;70:247-277.   DOI
67 Brennan JP, Southworth R, Medina RA, Davidson SM, Duchen MR, Shattock MJ. Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation. Cardiovasc Res. 2006;72: 313-321.   DOI   ScienceOn
68 Negretti N, O'Neill SC, Eisner DA. The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc Res. 1993;27:1826-1830.   DOI   ScienceOn
69 Crampin EJ, Smith NP, Langham AE, Clayton RH, Orchard CH. Acidosis in models of cardiac ventricular myocytes. Philos Transact A Math Phys Eng Sci. 2006;364:1171-1186.   DOI   ScienceOn
70 Bassani JW, Bassani RA, Bers DM. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol. 1994;476:279-293.   DOI
71 Bassani RA, Bassani JW, Bers DM. Relaxation in ferret ventricular myocytes: unusual interplay among calcium transport systems. J Physiol. 1994;476:295-308.   DOI
72 Pacher P, Csordas P, Schneider T, Hajnoczky G. Quantification of calcium signal transmission from sarco-endoplasmic reticulum to the mitochondria. J Physiol. 2000;529:553-564.   DOI   ScienceOn
73 Heytler PG. Uncouplers of oxidative phosphorylation. Methods Enzymol. 1979;55:462-472.
74 Yuan XJ, Sugiyama T, Goldman WF, Rubin LJ, Blaustein MP. A mitochondrial uncoupler increases KCa currents but decreases KV currents in pulmonary artery myocytes. Am J Physiol. 1996;270:C321-331.   DOI
75 Saotome M, Katoh H, Satoh H, Nagasaka S, Yoshihara S, Terada H, Hayashi H. Mitochondrial membrane potential modulates regulation of mitochondrial $Ca^{2+}$ in rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2005;288: H1820-1828.   DOI
76 Goldhaber JI, Parker JM, Weiss JN. Mechanisms of excitationcontraction coupling failure during metabolic inhibition in guinea-pig ventricular myocytes. J Physiol. 1991;443:371-386.   DOI
77 Gunter TE, Gunter KK, Sheu SS, Gavin CE. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994;267:C313-339.   DOI
78 Zablockaite D, Gendviliene V, Martisiene I, Jurevicius J. Effect of oxidative phosphorylation uncoupler FCCP and $F_{1}F_{0}$-ATPase inhibitor oligomycin on the electromechanical activity of human myocardium. Adv Med Sci. 2007;52:89-93.
79 Higgins TJ, Bailey PJ. The effects of cyanide and iodoacetate intoxication and ischaemia on enzyme release from the perfused rat heart. Biochim Biophys Acta. 1983;762:67-75.   DOI   ScienceOn
80 Weiss J, Hiltbrand B. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J Clin Invest. 1985;75:436-447.   DOI
81 Sparagna GC, Gunter KK, Sheu SS, Gunter TE. Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem. 1995; 270:27510-27515.   DOI
82 Beutner G, Sharma VK, Lin L, Ryu SY, Dirksen RT, Sheu SS. Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta. 2005; 1717:1-10.   DOI   ScienceOn
83 Li W, Shariat-Madar Z, Powers M, Sun X, Lane RD, Garlid KD. Reconstitution, identification, purification, and immunological characterization of the 110-kDa $Na^{+}$/$Ca^{2+}$ antiporter from beef heart mitochondria. J Biol Chem. 1992;267:17983-17989.