• 제목/요약/키워드: Mitochondrial inheritance

검색결과 17건 처리시간 0.021초

Mechanisms of Uniparental Mitochondrial DNA Inheritance in Cryptococcus neoformans

  • Gyawali, Rachana;Lin, Xiaorong
    • Mycobiology
    • /
    • 제39권4호
    • /
    • pp.235-242
    • /
    • 2011
  • In contrast to the nuclear genome, the mitochondrial genome does not follow Mendelian laws of inheritance. The nuclear genome of meiotic progeny comes from the recombination of both parental genomes, whereas the meiotic progeny could inherit mitochondria from one, the other, or both parents. In fact, one fascinating phenomenon is that mitochondrial DNA in the majority of eukaryotes is inherited from only one particular parent. Typically, such unidirectional and uniparental inheritance of mitochondrial DNA can be explained by the size of the gametes involved in mating, with the larger gamete contributing towards mitochondrial DNA inheritance. However, in the human fungal pathogen Cryptococcus neoformans, bisexual mating involves the fusion of two isogamous cells of mating type (MAT) a and MAT${\alpha}$, yet the mitochondrial DNA is inherited predominantly from the MATa parent. Although the exact mechanism underlying such uniparental mitochondrial inheritance in this fungus is still unclear, various hypotheses have been proposed. Elucidating the mechanism of mitochondrial inheritance in this clinically important and genetically amenable eukaryotic microbe will yield insights into general mechanisms that are likely conserved in higher eukaryotes. In this review, we highlight studies on Cryptococcus mitochondrial inheritance and point out some important questions that need to be addressed in the future.

Molecular Data Concerning Alloploid Character and the Origin of Chloroplast and Mitochondrial Genomes in the Liverwort Species Pellia borealis

  • Pacak, Andrezej
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.101-108
    • /
    • 2000
  • The liverwort Pellia borealis is a diploid, monoecious, allopolypliod species (n=18) that as it was postulated, originated after hybridization and duplication of chromosome sets of two cryptic species: Pellia epiphylta-species N (n=9) and Pellia epiphylla-species 5 (n=9). Our recent results have supported the allopolyploid origin of P.borealis. We have shown that the nuclear genome of P.borealis consists of two nuclear genomes: one derived from P.epiphylla-species N and the other from P.epiphylla-species 5. In this paper we show the origin of chloroplast and mitochondrial genomes in an allopolyploid species P.borealis. To our knowledge there is no information concerning the way of mitochondria and chloroplast inheritance in Brophyta. Using an allopolyploid species of p. borealis as a model species we have decided to look into chloroplast and mitochondrial genomes of P.borealis, P.epiphylla-species N and P.epiphylla-species S for nucleotide sequences that would allow us to differentiate between both cryptic species and to identify the origin of organelle genomes in the alloploid species. We have amplified and sequenced a chloroplast $tRNA^{Leu}$ gene (anticodon UAA) containing an intron that has shown to be highly variable in a nucleotide sequence and used for plant population genetics. Unfortunately these sequences were identical in all three liverwort species tested. The analysis of the nucleotide sequence of chloroplast, an intron containing $tRNA^{Gly}$ (anticodon UCC) genes, gave expected results: the intron nucleotide sequence was identical in the case of both P.borealis and P.epiphyllaspecies N, while the sequence obtained from P.epiphyllasperies S was different in several nucleotide positions. These results were confirmed by the nucleotide sequence of another chloroplast molecular marker the chloroplast, an intron-contaning $tRNA^{Lys}$ gene (anticodon UUU). We have also sequenced mitochondrial, an intron-containing $tRNA^{Ser}$ gene (anticodon GCU) in all three liverwort species. In this case we found that, as in the case of the chloroplast genome, P.borealis mitochondrial genome was inherited from P.epiphylla-species N. On the basis of our results we claim that both organelle genomes of P.borealis derived from P.epiphylla-species N.

  • PDF

시흥 목감동 출토 인골의 미토콘드리아 DNA와 STR의 유전적 특징 (Genetic Characteristics of mtDNA and STR marker in Human Bone Excavated from Mokgam-dong, Siheung in Korea)

  • 서민석;정용재;이규식;박기원
    • 보존과학연구
    • /
    • 통권24호
    • /
    • pp.153-167
    • /
    • 2003
  • We performed nuclear DNA typing and mitochondrial DNA sequencing analysis based on PCR from an ancient Korean remainsexcavated from Siheung in Korea. 7 bones were collected and partially STR(short tandem repeat) systems, Sex determination Amelogenin kit(Promega co, USA), were used in this study. Mitochondrial DNAs were also amplified and sequenced by ABI 310 DNA sequencer. We know that sample no. 2 and no. 3 were females and also sample no. 2 and no.7 possessed the same maternal inheritance by mitochondrial DNA sequencing results. Throughout this research, the mitochondrial DNA sequencing of human in the middle of Joseon Dynasty in Korea is obtained. In addition, this finding will be an important foundation for the future research.

  • PDF

Discrepancies between Mitochondrial DNA and AFLP Genetic Variation among Lineages of Sea Slaters Ligia in the East Asian Region

  • Kang, Seunghyun;Jung, Jongwoo
    • Animal Systematics, Evolution and Diversity
    • /
    • 제36권4호
    • /
    • pp.347-353
    • /
    • 2020
  • Although sea slaters Ligia have a significant role in rocky shore habitats, their taxonomic entities have not been clearly understood. In this study, we investigated whether genetic variation inferred from a nuclear genetic marker, namely amplified fragment length polymorphism (AFLP), would conform to that of a mitochondrial DNA marker. Using both the mitochondrial DNA marker and the AFLP marker amplified by the six selective primer sets, we analyzed 95 Ligia individuals from eight locations from East Asia. The direct sequencing of mitochondrial 16S rRNA gene revealed three distinct genetic lineages, with 9.8-11.7 Kimura 2-parameter genetic distance. However, the results of AFLP genotyping analysis with 691 loci did not support those of mitochondrial DNA, and revealed an unexpectedly high proportion of shared polymorphisms among lineages. The inconsistency between the two different genetic markers may be explained by difference in DNA evolutionary history, for example inheritance patterns, effective population size, and mutation rate. The other factor is a possible genomic island of speciation, in that most of the genomic parts are shared among lineages, and only a few genomic regions have diverged.

미토콘드리아 COI와 핵 RAG1 유전자 분석에 의한 줄종개(Cobitis tetralineata)와 왕종개(Iksookimia longicorpa) 간 자연잡종 동정 (Identification of a Natural Hybrid between the Striped Spine Loach Cobitis tetralineata and the King Spine Loach Iksookimia longicorpa by Analyzing Mitochondrial COI and Nuclear RAG1 Sequences)

  • 이일로;양현;김종환;김근용;방인철
    • 한국어류학회지
    • /
    • 제21권4호
    • /
    • pp.287-290
    • /
    • 2009
  • 줄종개(Cobitis tetralineata)와 왕종개(Iksookimia longicorpa)간 자연잡종으로 추정되는 개체를 유전적으로 동정하기 위하여 핵 recombination activating gene 1 (RAG1)과 미토콘드리아 cytochrome c oxidase I (COI) 유전자들의 염기서열을 분석하였다. RAG1 염기서열을 분석한 결과 850 bp 중에서 두 친어종들 간에 총 23개의 치환이 관찰되었고, 자연잡종 개체의 electropherogram에서는 이들 치환이 관찰된 모든 위치들에서 double peak들이 관찰되어, 멘델의 유전법칙을 따랐다. 그리고 모계를 통해 자손에게 유전되는 특징을 가지는 미토콘드리아 유전자들 중에서 COI 염기서열을 비교한 결과 잡종 개체는 줄종개와 염기서열이 100% 일치하여 그 모계는 줄종개임이 명확히 밝혀졌다.

Cloning, Sequencing and Characterization of Mitochondrial Control Region of the Domestic Silkwom, Bombyx mori

  • Lee, Jin-Sung;Kim, Ki-Hwan;Hoe, Hyang-Sook;Park, Jae-Heung;Kang, Seok-Woo;Lee, Sang-Han;Hwang, Jae-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제2권1호
    • /
    • pp.87-89
    • /
    • 2001
  • The nucleotide sequence of the domestic silkworm (Bombyx mori) mitochondrial (mt) control region and its flanking genes was determined from PCR clones. The control region of the silkworm mt genome was located between the small ribosomal RNA gene and transfer RN $A^{Met}$. This 499 bp control region hale 95.4% A+T content. Extensive comparative analysis studies performed with similar control region of other insect genomes could not reveal a highly conserved region containing conserved motifs of animal mito-chondrial genome. The remarkable feature that found in this control region was the presence of tandem motifs containing nine repetitive sequences. The potential usefulness of this motif sequences for Bombyx species or their taxonomically related species is enhanced by its unique localization in the maternally inheritance mitochondrial molecule.e.

  • PDF

본태성 수전증 환자의 미토콘드리아 DNA 분석 (Analysis of Mitochondrial DNA in Patients with Essential Tremor)

  • 이언;유영미;유찬종
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권2호
    • /
    • pp.188-195
    • /
    • 2000
  • Objective : Essential tremor(ET) is the most common movement disorder, however, there has been little agreement in the neurologic literature regarding diagnostic criteria for ET. Familial ET is an autosomal dominant disorder presenting as an isolated postural tremor. The main feature of ET is postural tremor of the arms with later involvement of the head, voice, or legs. In previous studies, it was reported that ET susceptibility was inherited in an autosomal dominant inheritance. As previous results, it would suggest that ET might be associated with defect of mitochondrial or nuclear DNA. Recent studies are focusing on molecular genetic detection of movement disorders, such as essential tremor and restless legs syndrome. Moreover, authors have analysed mitochondrial DNA(mtDNA) from the blood cell of positive control(PC) and ET patients via long and accurate polymerase chain reaction(LA PCR). Materials & Methods : Blood samples were collected from PC and 9 ET patients. Total DNA was extracted twice with phenol followed by chloroform : isoamylalcohol. For the analysis of mtDNA, LA PCR was performed by mitochondrial specific primers. Results : With this technique, deletions of large quantities were detected within several regions of mtDNA in ET patients except for D-loop and CO I regions. Conclusion : The authors believe that ET is a genentic disorder with deficiency of mitochondrial DNA multicomplexes and mitochondiral dysfunction could be one of major causative factors of ET. Mitochondrial dysfunction may play an important role in the pathogenesis and possibility of disease progression among familial group with ET patients.

  • PDF

Complete mitochondrial genome of Nyctalus aviator and phylogenetic analysis of the family Vespertilionidae

  • Lee, Seon-Mi;Lee, Mu-Yeong;Kim, Sun-sook;Kim, Hee-Jong;Jeon, Hye Sook;An, Junghwa
    • Journal of Species Research
    • /
    • 제8권3호
    • /
    • pp.313-317
    • /
    • 2019
  • Bats influence overall ecosystem health by regulating species diversity and being a major source of zoonotic viruses. Hence, there is a need to elucidate their migration, population structure, and phylogenetic relationship. The complete mitochondrial genome is widely used for studying the genome-level characteristics and phylogenetic relationship of various animals due to its high mutation rate, simple structure, and maternal inheritance. In this study, we determined the complete mitogenome sequence of the bird-like noctule (Nyctalus aviator) by Illumina next-generation sequencing. The sequences obtained were used to reconstruct a phylogenic tree of Vespertilionidae to elucidate the phylogenetic relationship among its members. The mitogenome of N. aviator is 16,863-bp long with a typical vertebrate gene arrangement, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 putative control region. Overall, the nucleotide composition is as follows: 32.3% A, 24.2% C, 14.3% G, and 29.2% T, with a slight AT bias (61.5%). The base composition of the 13 PCGs is as follows: 30.3% A, 13.4% G, 31.0% T, and 25.2% C. The phylogenetic analysis, based on 13 concatenated PCG sequences, infers that N. aviator is closely related to N. noctula with a high bootstrap value (100%).

A Natural Hybrid of Intergeneric Mating between a Female Pungtungia herzi and a Male Pseudorasbora parva (Cypriniformes: Cyprinidae)

  • Kim, Keun-Yong;Ko, Myeong-Hun;Cho, Sung Jang;Kim, Woo-Jin;Son, Min Ho;Bang, In-Chul
    • Fisheries and Aquatic Sciences
    • /
    • 제18권1호
    • /
    • pp.99-107
    • /
    • 2015
  • A natural hybrid of a probable intergeneric mating between the striped shiner Pungtungia herzi and the stone morocco Pseudorasbora parva (Cypriniformes: Cyprinidae) was captured in the Geumho River, a tributary of the Nakdong River basin in Korea. Morphological characters and DNA sequences were analyzed to verify its hybrid state and identify the parentage of its parent species. The hybrid exhibited a phenotypic intermediacy between the two parent species in the number of vertebrae and the mouth shape. Out of 1,488 base pair (bp) positions of the nuclear recombination activating gene 1 gene (rag1), which has a biparental mode of inheritance, 41-bp substitutions were detected between the two parent species, whereas an electropherogram of the hybrid displayed polymorphic double peaks at all of the base positions, along with one additional one, strongly indicating its hybrid state. Meanwhile, sequence comparison of the mitochondrial cytochrome b gene (mt-cyb) (1,140 bp), which has a maternal mode of inheritance, showed only 5-22-bp differences (97.6-99.5% identities) between the hybrid and Pu. herzi, but as many as 158-168-bp differences (85.2-86.1% identities) between the hybrid and Ps. parva, clearly indicating Pu. herzi as the maternal species. Thus, combined analyses of independent data sets (i.e., morphology and nuclear and mitochondrial DNA sequences) offered convincing evidence for the hybrid state of a naturally occurring hybrid resulting from intergeneric mating between a female Pu. herzi and a male Ps. parva.

본태성 수전증과 파킨슨병 환자에서 미토콘드리아 DNA 비교 분석 (The Analysis of Mitochondrial DNA in the Patients with Essential Tremor and Parkinson's Disease)

  • 김래상;유찬종;이상구;김우경;한기수;김영보;박철완;이언
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권11호
    • /
    • pp.1415-1420
    • /
    • 2000
  • Essential tremor(ET) is the most common movement disorder however there has been little agreement in the neurologic literature regarding diagnostic criteria for ET. Familial ET is an autosomal dominant disorder presenting as an isolated postural tremor. The main feature of ET is postural tremor of the arms with later involvement of the head, voice, or legs. In previous studies, it was reported that ET susceptibility was inherited in an autosomal dominant inheritance. As with previous results, it would suggest that ET might be associated with defect of mitochondrial or nuclear DNA. Recent studies are focusing molecular genetic detection of movement disorders, such as essential tremor and restless legs syndrome. Parkinson's disease(PD) is a neurodegenerative disease involving mainly the loss of dopaminergic neurons in substantia nigra by several factors. The cause of dopaminergic cell death is unknown. Recently, it has been suggested that Parkinson's disease many result from mitochondrial dysfunction. The authors have analysed mitochondrial DNA(mtDNA) from the blood cell of PD and ET patients via long and accurate polymerase chain reaction(LA PCR). Blood samples were collected from 9 PD and 9 ET patients. Total DNA was extracted twice with phenol followed by chloroform : isoamylalcohol. For the analysis of mtDNA, LA PCR was performed by mitochondrial specific primers. With LA PCR, 1/3 16s rRNA~1/3 ATPase 6/8 and COI~3/4 ND5 regions were observed in different patterns. But, in the COI~1/3 ATPase 6/8 region, the data of PCR were observed in same pattern. This study supports the data that ET and PD are genentic disorders with deficiency of mitochondrial DNA multicomplexes.

  • PDF