Int. J. Indust. Entomol. Vol. 2, No. 1, 2001, pp. 1~6
[Review]

International Journal of
Industrial Entomology

Comparative Analysis of Completely Sequenced Insect Mitochondrial

Genomes

Jin Sung Lee, Ki Hwan Kim', Dong Sang Suh', Jae Heung Park, Ji Yoeun Suh? Kyu Hoi Chung’ and

Jae Sam Hwang**

CoreBio Research Institute of Life Science & Biotechnology, CoreBio System Co., Ltd., Seoul 603-23, Korea.

"Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Korea.

2Infecz‘ious Diseases Research Institute, Samsung Biomedical Research Institute, Seoul 135-710, Korea.

3Department of Biology, Kyonggi University, Suwon 442-760, Korea.

*Department of Sericulture and Entomology, National Institute of Agricultural Science and Technology, RDA, Suwon 441-744,

Korea.

(Received 12 January 2001; Accepted 12 February 2001)

This paper reports a few characteristics of seven insect
mitochondrial genomes sequenced completely (Bom-
byx mori, Drosophila melanogaster, D. yakuba, Apis
mellifera, Anopheles gambiae, A. quadrimaculatus, and
Locusta migratoria). Comparative analysis of complete
mt genome sequences from several species revealed a
number of interesting features (base composition, gene
content, A+T-rich region, and gene arrangement, etc)
of insect mitochondrial genome. The properties
revealed by our work shed new light on the organiza-
tion and evolution of the insect mitochondrial genome
and more importantly open up the way to clearly
aimed experimental studies for understanding critical
roles of the regulatory mechanisms (transcription and
translation) in mitochondrial gene expression.
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Introduction

Mitochondrial (imt) genome is smaller than nuclear DNA
with a simpler composition and has the genetic charac-
teristic of being transmitted maternally. For example, mt
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genome size of human being is about 1/8000 of an aver-
age DNA, and this takes up 0.5% in the total chromosome
(somatic cell). Intervening sequence between transcribed
genes and spacer sequence between genes are not gener-
ally detected in animal mt genome. Also, unlikely various
nuclear DNAs that are rearranged in a complex mode,
rearrangement among genes is not occurred usually in mt
genome in higher eukaryotes. Mt genome has a simple
composition and has a very simple genetic mode excluded
from the influence of nuclear DNA (Cann et al., 1987; Nei
and Kohe er al, 1983; Strachan er al., 1976). Thus, mt
genome is a useful mateial in studying molecular-evolu-
tion of living things. Moreover, mt genome is transmitted
through cytoplasm so that it is also helpful in studies of
inter-evolution between nucleus and cytoplasm (Brown ez
al., 1985; Clayton et al., 1975; Wolstenholmn et al.,
1992).

Table 1 shows the comparison of the characteristics
between nuclear DNA and mt genome. Until now, seven
species belonging to four orders in insect have been
reported in 4 orders of 6 species [Hymenoptera; Apis mel-
lifera (1L0O6178), Diptera; Anopheles gambiae (1.20934),
A. quadrimaculatus (1.L04272), Drosophila melanogaster
(U37541), D. yakuba (X03240), Orthoptera; Locusta
migratoria (X80245), Lepidoptera; Bombyx mori (AF
149768) (Clary et al., 1985; Garesse et al., 1985; Crozier
et al., 1993; Michell er al., 1993; Beard et al., 1993;
Flook et al., 1995, Lee et al., 1999)] (Table 2). These
reported cases take 4.4% of 135 types of mt genomes
registered with GOBASE (http://megasun.bch.umont-
real, ca), only seven completed mt genome sequences in
insects suggest lack of extensive mt genome analysis in
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Table 1. Comparison of human nuclear and mitochondrial genome

Nuclear genome

Mitochondrial genome

Total size 3,000 Mbp
Total no. of DNA molecule per one cell

Associated protein

23 in haploid cell; 46 in diploid cell
Several classes of histon and non-histone protein

16.6 kbp
Severalx 10°
Largely free of protein

Repetitive DNA Large fraction Very little

Intron Found in most genes Absent

% of coding DNA About 3% About 93%
Recombination At least once for each pair of homologs at meiosis  None

Inheritance Mendelian mode Exclusively maternal mode

Table 2. Comparative analysis of A+T-rich region, two rRNA genes and protein-coding genes of insect mitochondrial genomes

. . A+T content LrRNA gene SrRNA gene A+T-rich region
. Accession Total size Total A+T No. of - - -
Organism o, (bp) %)  codons of PCG*  Size A+T  Size A+T  Size A+T
(%) bp) (%)  (bp) ()  (bp) (%)
B. mori AF149768 15,643 81.3 3,714 79.5 1,375 844 783 85.6 499 95.4
A. gambiae L20934 15,363 77.6 3,733 75.9 1,325 825 800 79.6 519 94.2
A. qadrima. L04272 15,455 77.4 3,728 75.4 1,321 82.2 794 80.5 625 93.5
D. yakuba X03240 16,019 78.6 3,727 76.7 1,326 834 789 79.3 1,077 92.9
L. migratoria  X80245 15,722 75.3 3,713 74.1 1,314 789 829 76.0 875 86.2
A. mellifera L06178 16,343 84.9 3,675 832 1,371 85.3 786 814 827 96.1
*PCG indicates thirteen protein-coding gene of mitochondrial genome.
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genomes usually occur due to deletion and addition, and
especially, the change in size occurs according to the pres-
ence or absence of tandomly repeated sequences in the
A+T-rich region, which plays similar roles as displace-
ment-loop (D-loop) that is termed as replication origin in
mammals (Clary et al., 1987; Moritz and Brown et al.,
1987). As shown in Fig. 1, the A+T-rich region in D. mel-
anogaster is composed of 4,584 bp with 10 tandom repeat
sequences whereas that in D. yakuba is composed of
1,077 bp with the presence of 2 tandom repeat sequences.

Fig. 1. Comparison of A+T rich region of insect mitochondrial
genome. The arrow heads indicate tandom repetitive sequences.
The bent arrows indicate transcriptional direction of flanking
mitochondrial genes of A+T-rich region.

Thus, the change of about 3 kb in size exists in the A+T-
rich region. However, the remaining four insect species
including B. mori did not possessed tandomly repeated
sequences.
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Base composition and control region

One of the characteristics of insect mt genome is that the
content of A and T is significantly higher than other
classes of organisms. Among those studies reported, A.
mellifera (84.9%) and B. mori (81.3%) are the heavily
biased in A and T contents, which are known to be
extreme compared to 55% to 60% in mammals. When the
A and T content within mt genome according to gene was
analyzed, A and T content is shown in the descending
order of A+T-rich region, rRNA gene, and protein-coding
gene. Thus, we could determine that the A+T-rich region
that is the region responsible for insect mt genome rep-
lication contains the highest content of A and T. In the
case of B. mori, the A+T-rich region showed the A and T
content of 95.4%, which is highly disproportionate com-
pared to that in the completely mt genome (Table 2).
Thus, due to these reasons, the replication region of insect
mt genome is not called D-loop but is called the A+T- rich
region (Debruijn er al., 1983; Fauron er al, 1980).
Unlikely insects, the highly conserved content of A and T
in the A+T-rich region is not detected in mammals, mak-
ing motif analysis difficult for replication origin through
similarity analysis (Clayton et al., 1984, 1991; Dairaghi et
al., 1995; Fisher et al., 1992; Kruse et al., 1989; Parisi et
al., 1991). Thus, studies related to replication mechanism
of insect mt genome and related regions are not well
understood in many areas.

Gene content and its arrangement
Mt genome in eukaryotic organisms has five necessary
enzyme complexes in the oxidative phosphorylation and

when adenine nucleotide translocator (ANT) that exists as
a homodimer expressed in nuclear DNA is included, about
90 proteins form the five protein complexes to accomplish
ATP synthesis and respiratory process (Clayton., 1991).
Among 39 subunits of complex I, 7 subunits exist on mt
genome, and rest on nuclear DNA. Four subunits of com-
plex II exist on nuclear DNA, and complex III is com-
posed of a total of 10 subunits, and mt genome encodes
only cytochrome B. Complex IV is composed of a total of
subunits, and only 3 of the genes exist on mt genome.
Lastly, complex V is composed of 12 subunits among
which only ATPase6 and ATPase8 are detected on mt
genome. Also, mt genome encodes 22 tRNA genes and 2
rRNA (128 and 16S rRNA) necessary for the translating
procedure of mitochondrial protein synthesis (Clayton,
1975; Stachan et al., 1996).

Insect mt genome includes the above 37 genes (Fig. 2).
Thus, the gene contents and function of mt genome in
higher eukaryotes are discovered commonly throughout
various species but has many differences in gene arrange-
ment. The arrangement of insect mt genome can be divided
into two types, homologous and non-homologous arrange-
ments. With 13 protein-encoding genes, homologous
arrangement has the relatively same arrangement in all
insects. The main source of non-homologous arrangement
stems from tRNA genes and rRNA genes. For example,
except for the inversion of one tRNAS” gene in A. gambiae
and A. quadrimaculatus, all the gene arrangements are
same throughout insect species (Fig. 2). However, this is not
true among different classes. Especially, compared to mt
gene arrangements reported until now, the fact is noticeable
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Fig. 2. Comparative analysis of arrangement of insect mitochondrial genes. The arrow heads indicate transcriptional direction of 22

mitochondrial tRNA genes.
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Table 3. Comparison of initiation and termination signals in protein-coding genes of insect mitochondrial genomes

PCG Initiation Termination

Bmo Aga Aqu Dya Ame Bmo Aga Aqu Dya Ame
ATPase6  ATG ATG ATG ATG ATG TAA TAA TAA TAA TAA
ATPase8 ATA ATC ATC ATT ATT TAA TAA TAA TAA TAA
COl CGA~ TCG* TCG* ATAA* ATA Taa Taa Taa TAA Taa
(6011 ATG ATG ATG ATG ATT Taa Taa Taa Taa Taa
COIll ATG ATG ATG ATG ATG TAA Taa Taa TAA TAA
CytB ATA ATG ATG ATG ATG TAA Taa TAA TAA TAA
ND1 ATT ATA ATT ATA ATT TAA TAA TAA TAA TAA
ND2 ACA ATC ATT ATT ATC TAA Taa Taa Taa TAa
ND3 ATA ATA ATA ATT ATA TAA Taa Taa TAA TAA
ND4 ATG ATG ATG ATG ATA TAA Taa Taa Taa TAA
ND4L ATG ATA ATG ATG ATT Taa TAA TAA TAA TAA
NDS5 ATT GTG* ATT ATT ATT TAA TAA Taa Taa TAA
ND6 ATT ATT ATT ATT ATT TAA TAA TAA TAA TAA

TAa and Taa signifies incomplete termination codons. Bmo, Aga, Aqu, Dya and Ame indicate Bombyx mori, Anopheles gambiae,
Anophele quadrimaculatus, Drosophila yakuba and Apis mellifera, respectively. *indicates incomplete or unusual termination codon.

that many of the mt gene arrangement in A. mellifera and B.
mori are translocational arrangement rather than inversion.
For example, except for A. mellifera, the arrangement of
(RNAARNAAE-(RNAA-(RNAS-(RNA“"-(RNA™  that
is composed with the largest gene group among the group
of tRNA gene is almost the same gene arrangement (Fig. 2).
Also, tRNAY gene located between 12S rRNA and 16S
rRNA genes has the same direction in six insect species, but
is inversed in B. mori (Fig. 2).

Translation initiation and termination codons

As mt gene in other animals, triplet ATN (N=A or T or
C or G) is used as insect translation initiation codon.
Among these, not only ATN but also TTG and GTG are
used as initiation codon in Drosophila, and, especially,
COI of D. yakuba uses a substitute translation initiation
codon that encodes quadruplet codon called ATAA. Also,
in COI gene, B. mori uses CGA as the translation initi-
ation codon, specifically, and NDS in A. gambiae uses
GTG as the translation initiation codon. Thus, among
those protein-coding genes of insect mt genome, COI and
NDS5 use special codons among insect species (Table 3).
However, molecular biology studies have not been
reported on these genes. In the case of termination codon,
all of the genes in other taxonomic groups use TAA codon
as mt genome. However, it has been reported that some
unstable termination codons are rearranged due to the
post-transcriptional polyadenylation process, forming
complete TAA (Clayton, 1984, 1991; Shadel, 1993).

Transcriptional-termination signal of 16S rRNA gene
Generally, the expression of mt gene goes through the

polycistronic process where several genes in L-strand pro-
moter (LSP) and H-strand promoter (HSP) located on D-
loop near the replication origin transcribed at once (Chang
and Clayton, 1987; Doda et al., 1981). The transcription
and translation of mt genes seem to be accomplished
through the similar process also in the case of insects.
However, based on the transcription termination signal of
rRNA gene in human mt genome, the rRNA gene termi-
nation signal was confirmed in insect mt genome. As
shown in Fig. 3, the transcription termination signal in
insect mt 16S rRNA gene is highly conserved within
tRNA" gene in insects, which is located in downstream
of 16S rRNA genes as in vertebrates, although other tax-
onomic groups are conserved within COI, ND3, and non-
coding region, respectively. Thus, the transcription termi-
nation signal of 16S rRNA gene is suggested to be related
more with the conservation of transcription termination
signal rather than the location of tRNA located in the
downstream of rRNA and structural conservation.

Summary

Other than what has been discussed above, many char-
acteristics in insect mt genomes can be analyzed and
found. However, not many studies are at present dealing
with interesting aspects of insect mt genomes in depth due
maybe to the fact that the mt genome study has maily been
focused on molecular evoulation, and phylogenetics, spe-
cies identification. For an example, the total nucleotide
sequence of mt genome of A. gambia and A. quadrimac-
ulatus was determined in order to analyze the genetic rela-
tionship of the mosquito that is the host insect transmitting
malaria. Thus, from the aspect of understanding molecular
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Human 5/ TGGCAGAGCCCGG
Cow 5’/ TGGCAGAGCCCGG
Mammals Rat 5/ TGGCAGAGCCCGG
Whale 5/ TGGCAGAGCCAAG
Seal 57 TGGCAGAGCCGGC {RNALea(UUR)
Mouse 5’ TGGCAGAGCCCGG 168 rRNA
Fish [: Loach 5’ TGGCAGAGCATGG
Bird E Chicken 5’ TGGCAGAGCTCGG
Amphibia E Xenopus 5’ TGGCAGAGCCTGG
Crustacea |: Arthemia 5’ TGGCAGACAAATC
Leu(CUN)
Droscphila 57 TGGCAGATTAGTG tRNA
16S rRNA
Locusta 5’ TGGCAGATTAGTG
Insects .
Apis 5’ TGGCATAATAGTG
Bombyx 5’ TGGCAGAGTAAAT
CONSENSUS TGGCAGANNNNNG

Echinoderma l:

Sea Urchin

Caenorhabditis

Nematodes ‘
Ascaris

Mollusk I: Mussel

3

57

5¢

COI
TAGCAGAATCAAc:] 168 IRNA
TGGAAARATTCAA ND3
165 rRNA
TGGTAAAATTCAG

Non Coding Region

TGGTAGATTTTAG 168 IRNA

Fig. 3. Conservation of the termination signal of 16S rRNA genes in insect mitochondrial genomes. A heptanucleotide sequence
with high similarity to the first seven nucleotide of the insect transcriptional signal can be found in downstream of 16S rRNA genes
in a variety of mitochondrial genomes representing different phyla. The gene or region of the mitochondrial genome adjacent to the
large rRNA (16S rRNA) is schematically shown at right; the position of the conserved sequence is closed box. A consensus
sequence has been deduced for vertebrates, arthropod, and echinoderm; the first seven nucleotides are maintained in other phyla

with one to three mismatches.

mitochondrial DNA: conserved features of the mammalian

evolution, extensive analysis on overall mt genome would
give many phylogenetic data since the extent of under-
standing molecular-evolution in living organisms could be
broadened from the fact that mt genome in overall could
be analyzed in depth beyond the dimension of under-
standing with each gene and the advantage of analyzing
from various view points. However, considering the many
insect species, which takes up most of existing living spe-
cies, the usefulness and application of mt genome in the 7
species that have been analyzed until now are still insuf-
ficient.
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