• 제목/요약/키워드: Mitochondrial dynamics

검색결과 51건 처리시간 0.025초

Association Analysis between Genes' Variants for Regulating Mitochondrial Dynamics and Fasting Blood Glucose Level

  • Jung, Dongju;Jin, Hyun-Seok
    • 대한의생명과학회지
    • /
    • 제22권3호
    • /
    • pp.107-114
    • /
    • 2016
  • Maintenance of fasting blood glucose levels is important for glucose homeostasis. Disruption of feedback mechanisms are a major reason for elevations of glucose level in blood, which is a risk factor for type 2 diabetes mellitus that is mainly caused by malfunction of pancreatic beta-cell and insulin. The fasting blood glucose level has been known to be influenced by genetic and environmental factors. Mitochondria have many functions for cell survival and death: glucose metabolism, fatty acid oxidation, ATP generation, reactive oxygen species (ROS) metabolism, calcium handling, and apoptosis regulation. In addition to these functions, mitochondria change their morphology dynamically in response to multiple signals resulting in fusion and fission. In this study, we aimed to examine association between fasting blood glucose levels and variants of the genes that are reported to have functions in mitochondrial dynamics, fusion and fission, using a cohort study. A total 416 SNPs from 36 mitochondrial dynamics genes were selected to analyze the quantitative association with fasting glucose level. Among the 416 SNPs, 4 SNPs of PRKACB, 13 SNPs of PPP3CA, 6 SNPs of PARK2, and 3 SNPs of GDAP1 were significantly associated. In this study, we were able to confirm an association of mitochondrial dynamics genes with glucose levels. To our knowledge our study is the first to identify specific SNPs related to fasting blood glucose level.

미토콘드리아의 구조적 역동성의 신경계 발생 과정 기능 고찰 (Perspective on the Role of Mitochondrial Dynamics in the Nervous System Development)

  • 조봉기;선웅
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권1호
    • /
    • pp.13-23
    • /
    • 2009
  • 최근에 이루어진 세포생물학적, 유전학적 연구들을 통하여 미토콘드리아의 구조 변화가 매우 역동적이며, dynamin- related protein(DRP)와 같은 다양한 단백질에 의해 조절된다는 것이 알려지게 되었다. 미토콘드리아가 ATP 합성을 통한 세포내 신진대사에 관여하며, 소포체와 상호작용을 통하여 칼슘 이온 농도의 항상성 유지, 그리고 세포 사멸에서 중요한 역할을 한다는 사실을 고려해 볼 때, 미토콘드리아 구조 역동성 조절은 정상적인 세포의 성장과 항상성 유지와 매우 밀접한 관계에 있다. 이러한 점에서, 미토콘드리아의 구조 역동성 변화가 신경세포의 발달에 큰 영향을 줄 것으로 생각된다. 이 논문에서는 미토콘드리아의 구조 역동성을 조절하는 단백질들을 소개하고, 신경세포의 발달과정에서 미토콘드리아의 구조 역동성 조절의 중요성에 대하여 전망하고자 한다.

  • PDF

Niclosamide induces mitochondria fragmentation and promotes both apoptotic and autophagic cell death

  • Park, So-Jung;Shin, Ji-Hyun;Kang, Hee;Hwang, Jung-Jin;Cho, Dong-Hyung
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.517-522
    • /
    • 2011
  • Mitochondrial dynamics not only involves mitochondrial morphology but also mitochondrial biogenesis, mitochondrial distribution, and cell death. To identify specific regulators to mitochondria dynamics, we screened a chemical library and identified niclosamide as a potent inducer of mitochondria fission. Niclosamide promoted mitochondrial fragmentation but this was blocked by down-regulation of Drp1. Niclosamide treatment resulted in the disruption of mitochondria membrane potential and reduction of ATP levels. Moreover, niclosamide led to apoptotic cell death by caspase-3 activation. Interestingly, niclosamide also increased autophagic activity. Inhibition of autophagy suppressed niclosamide-induced cell death. Therefore, our findings suggest that niclosamide induces mitochondria fragmentation and may contribute to apoptotic and autophagic cell death.

Comprehensive overview of the role of mitochondrial dysfunction in the pathogenesis of acute kidney ischemia-reperfusion injury: a narrative review

  • Min-Ji Kim;Chang Joo Oh;Chang-Won Hong;Jae-Han Jeon
    • Journal of Yeungnam Medical Science
    • /
    • 제41권2호
    • /
    • pp.61-73
    • /
    • 2024
  • Acute kidney ischemia-reperfusion (IR) injury is a life-threatening condition that predisposes individuals to chronic kidney disease. Since the kidney is one of the most energy-demanding organs in the human body and mitochondria are the powerhouse of cells, mitochondrial dysfunction plays a central role in the pathogenesis of IR-induced acute kidney injury. Mitochondrial dysfunction causes a reduction in adenosine triphosphate production, loss of mitochondrial dynamics (represented by persistent fragmentation), and impaired mitophagy. Furthermore, the pathological accumulation of succinate resulting from fumarate reduction under oxygen deprivation (ischemia) in the reverse flux of the Krebs cycle can eventually lead to a burst of reactive oxygen species driven by reverse electron transfer during the reperfusion phase. Accumulating evidence indicates that improving mitochondrial function, biogenesis, and dynamics, and normalizing metabolic reprogramming within the mitochondria have the potential to preserve kidney function during IR injury and prevent progression to chronic kidney disease. In this review, we summarize recent advances in understanding the detrimental role of metabolic reprogramming and mitochondrial dysfunction in IR injury and explore potential therapeutic strategies for treating kidney IR injury.

A Molecular Approach to Mitophagy and Mitochondrial Dynamics

  • Yoo, Seung-Min;Jung, Yong-Keun
    • Molecules and Cells
    • /
    • 제41권1호
    • /
    • pp.18-26
    • /
    • 2018
  • Mitochondrial quality control systems are essential for the maintenance of functional mitochondria. At the organelle level, they include mitochondrial biogenesis, fusion and fission, to compensate for mitochondrial function, and mitophagy, for degrading damaged mitochondria. Specifically, in mitophagy, the target mitochondria are recognized by the autophagosomes and delivered to the lysosome for degradation. In this review, we describe the mechanisms of mitophagy and the factors that play an important role in this process. In particular, we focus on the roles of mitophagy adapters and receptors in the recognition of damaged mitochondria by autophagosomes. In addition, we also address a functional association of mitophagy with mitochondrial dynamics through the interaction of mitophagy adaptor and receptor proteins with mitochondrial fusion and fission proteins.

The role of cell type-specific mitochondrial dysfunction in the pathogenesis of Alzheimer's disease

  • Kim, Dong Kyu;MookJung, Inhee
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.679-688
    • /
    • 2019
  • The decrease of metabolism in the brain has been observed as the important lesions of Alzheimer's disease (AD) from the early stages of diagnosis. The cumulative evidence has reported that the failure of mitochondria, an organelle involved in diverse biological processes as well as energy production, maybe the cause or effect of the pathogenesis of AD. Both amyloid and tau pathologies have an impact upon mitochondria through physical interaction or indirect signaling pathways, resulting in the disruption of mitochondrial function and dynamics which can trigger AD. In addition, mitochondria are involved in different biological processes depending on the specific functions of each cell type in the brain. Thus, it is necessary to understand mitochondrial dysfunction as part of the pathological phenotypes of AD according to each cell type. In this review, we summarize that 1) the effects of AD pathology inducing mitochondrial dysfunction and 2) the contribution of mitochondrial dysfunction in each cell type to AD pathogenesis.

Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide

  • Kwan, Kenneth Kin Leung;Yun, Huang;Dong, Tina Ting Xia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • 제45권4호
    • /
    • pp.473-481
    • /
    • 2021
  • Background: Mitochondrial dysfunction is one of the significant reasons for Alzheimer's disease (AD). Ginsenosides, natural molecules extracted from Panax ginseng, have been demonstrated to exert essential neuroprotective functions, which can ascribe to its anti-oxidative effect, enhancing central metabolism and improving mitochondrial function. However, a comprehensive analysis of cellular mitochondrial bioenergetics after ginsenoside treatment under Aβ-oxidative stress is missing. Methods: The antioxidant activities of ginsenoside Rb1, Rd, Re, Rg1 were compared by measuring the cell survival and reactive oxygen species (ROS) formation. Next, the protective effects of ginsenosides of mitochondrial bioenergetics were examined by measuring oxygen consumption rate (OCR) in PC12 cells under Aβ-oxidative stress with an extracellular flux analyzer. Meanwhile, mitochondrial membrane potential (MMP) and mitochondrial dynamics were evaluated by confocal laser scanning microscopy. Results: Ginsenoside Rg1 possessed the strongest anti-oxidative property, and which therefore provided the best protective function to PC12 cells under the Aβ oxidative stress by increasing ATP production to 3 folds, spare capacity to 2 folds, maximal respiration to 2 folds and non-mitochondrial respiration to 1.5 folds, as compared to Aβ cell model. Furthermore, ginsenoside Rg1 enhanced MMP and mitochondrial interconnectivity, and simultaneously reduced mitochondrial circularity. Conclusion: In the present study, these results demonstrated that ginsenoside Rg1 could be the best natural compound, as compared with other ginsenosides, by modulating the OCR of cultured PC12 cells during oxidative phosphorylation, in regulating MMP and in improving mitochondria dynamics under Aβ-induced oxidative stress.

microRNA-200a-3p enhances mitochondrial elongation by targeting mitochondrial fission factor

  • Lee, Heejin;Tak, Hyosun;Park, So Jung;Jo, Yoon Kyung;Cho, Dong Hyung;Lee, Eun Kyung
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.214-219
    • /
    • 2017
  • Mitochondria play pivotal roles in the ATP production, apoptosis and generation of reactive oxygen species. Although dynamic regulation of mitochondria morphology is a critical step to maintain cellular homeostasis, the regulatory mechanisms are not yet fully elucidated. In this study, we identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting mitochondrial fission factor (MFF). We demonstrated that the ectopic expression of miR-200a-3p enhanced mitochondrial elongation, mitochondrial ATP synthesis, mitochondrial membrane potential and oxygen consumption rate. These results indicate that miR-200a-3p positively regulates mitochondrial elongation by downregulating MFF expression.

Effects of treadmill exercise on the regulatory mechanisms of mitochondrial dynamics and oxidative stress in the brains of high-fat diet fed rats

  • Koo, Jung-Hoon;Kang, Eun-Bum
    • 운동영양학회지
    • /
    • 제23권1호
    • /
    • pp.28-35
    • /
    • 2019
  • [Purpose] The purpose of this study was to investigate the effects of treadmill exercise on oxidative stress in the hippocampal tissue and mitochondrial dynamic-related proteins in rats fed a long-term high-fat diet (HFD). [Methods] Obesity was induced in experimental animals using high fat feed, and the experimental groups were divided into a normal diet-control (ND-CON; n=12), a high fat diet-control (HFD-CON; n=12) and a high fat diet-treadmill exercise (HFD-TE; n=12) group. The rats were subsequently subjected to treadmill exercise (progressively increasing load intensity) for 8 weeks (5 min at 8 m/min, then 5 min at 11 m/min, and finally 20 min at 14 m/min). We assessed weight, triglyceride (TG) concentration, total cholesterol (TC), area under the curve, homeostatic model assessment of insulin resistance, and AVF/body weight. Western blotting was used to examine expression of proteins related to oxidative stress and mitochondrial dynamics, and immunohistochemistry was performed to examine the immunoreactivity of gp91phox. [Results] Treadmill exercise effectively improved the oxidative stress in the hippocampal tissue, expression of mitochondrial dynamic-related proteins, and activation of NADPH oxidase (gp91phox) and induced weight, blood profile, and abdominal fat loss. [Conclusion] Twenty weeks of high fat diet induced obesity, which was shown to inhibit normal mitochondria fusion and fission functions in hippocampal tissues. However, treadmill exercise was shown to have positive effects on these pathophysiological phenomena. Therefore, treadmill exercise should be considered during prevention and treatment of obesity-induced metabolic diseases.

Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells

  • Long, Rui-ting;Peng, Jun-bo;Huang, Li-li;Jiang, Gui-ping;Liao, Yue-juan;Sun, Hang;Hu, Yu-dong;Liao, Xiao-hui
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.893-905
    • /
    • 2019
  • Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.