Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0060

Augmenter of Liver Regeneration Alleviates Renal Hypoxia-Reoxygenation Injury by Regulating Mitochondrial Dynamics in Renal Tubular Epithelial Cells  

Long, Rui-ting (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University)
Peng, Jun-bo (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University)
Huang, Li-li (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University)
Jiang, Gui-ping (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University)
Liao, Yue-juan (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University)
Sun, Hang (Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University)
Hu, Yu-dong (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University)
Liao, Xiao-hui (Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University)
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fission and fusion processes that closely related to their function. Disruption of mitochondrial dynamics has been demonstrated in acute kidney injury (AKI), which could eventually result in cell injury and death. Previously, we reported that augmenter of liver regeneration (ALR) alleviates renal tubular epithelial cell injury. Here, we gained further insights into whether the renoprotective roles of ALR are associated with mitochondrial dynamics. Changes in mitochondrial dynamics were examined in experimental models of renal ischemia-reperfusion (IR). In a model of hypoxia-reoxygenation (HR) injury in vitro, dynamin-related protein 1 (Drp1) and mitochondrial fission process protein 1 (MTFP1), two key proteins of mitochondrial fission, were downregulated in the Lv-ALR + HR group. ALR overexpression additionally had an impact on phosphorylation of Drp1 Ser637 during AKI. The inner membrane fusion protein, Optic Atrophy 1 (OPA1), was significantly increased whereas levels of outer membrane fusion proteins Mitofusin-1 and -2 (Mfn1, Mfn2) were not affected in the Lv-ALR + HR group, compared with the control group. Furthermore, the mTOR/4E-BP1 signaling pathway was highly activated in the Lv-ALR + HR group. ALR overexpression led to suppression of HR-induced apoptosis. Our collective findings indicate that ALR gene transfection alleviates mitochondrial injury, possibly through inhibiting fission and promoting fusion of the mitochondrial inner membrane, both of which contribute to reduction of HK-2 cell apoptosis. Additionally, fission processes are potentially mediated by promoting tubular cell survival through activating the mTOR/4E-BP1 signaling pathway.
Keywords
acute kidney injury; augmenter of liver regeneration; hypoxia-reoxygenation; ischemia-reperfusion; mitochondrial dynamics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Jiang, X., Liao, X.H., Huang, L.L., Sun, H., Liu, Q., and Zhang, L. (2019). Overexpression of augmenter of liver regeneration (ALR) mitigates the effect of $H_{2}O_{2}$-induced endoplasmic reticulum stress in renal tubule epithelial cells. Apoptosis 24, 278-289.   DOI
2 Kaddourah, A., Basu, R.K., Bagshaw, S.M., Goldstein, S.L.; AWARE Investigators. (2017). Epidemiology of acute kidney injury in critically ill children and young adults. N. Engl. J. Med. 376, 11-20.   DOI
3 Kamerkar, S.C., Kraus, F., Sharpe, A.J., Pucadyil, T.J., and Ryan, M.T. (2018). Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun. 9, 5239.   DOI
4 Laplante, M. and Sabatini, D.M. (2012). mTOR signaling in growth control and disease. Cell 149, 274-293.   DOI
5 Leung, K.C., Tonelli, M., and James, M.T. (2013). Chronic kidney disease following acute kidney injury-risk and outcomes. Nat. Rev. Nephrol. 9, 77-85.   DOI
6 Liao, X.H., Chen, G.T., Li, Y., Zhang, L., Liu, Q., Sun, H., and Guo, H. (2012). Augmenter of liver regeneration attenuates tubular cell apoptosis in acute kidney injury in rats: the possible mechanisms. Ren. Fail. 34, 590-599.   DOI
7 Liao, X.H., Zhang, L., Chen, G.T., Yan, R.Y., Sun, H., Guo, H., and Liu, Q. (2014). Augmenter of liver regeneration inhibits TGF-${\beta}1$-induced renal tubular epithelial-to-mesenchymal transition via suppressing $T{\beta}R$ II expression in vitro. Exp. Cell Res. 327, 287-296.   DOI
8 Calo, L., Dong, Y., Kumar, R., Przyklenk, K., and Sanderson, T.H. (2013). Mitochondrial dynamics: an emerging paradigm in ischemia-reperfusion injury. Curr. Pharm. Des. 19, 6848-6857.   DOI
9 Cho, S.G., Du, Q., Huang, S., and Dong, Z. (2010). Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. Am. J. Physiol. Renal. Physiol. 299, F199-F206.   DOI
10 Galvan, D.L., Long, J., Green, N., Chang, B.H., Lin, J.S., Schumacker, P.T., Truong, L.D., Overbeek, P., and Danesh, F.R. (2019). Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice. J. Clin. Invest. 129, 2807-2823.   DOI
11 Huang, L.L., Long, R.T., Jiang, G.P., Jiang, X., Sun, H., Guo, H., and Liao, X.H. (2018). Augmenter of liver regeneration promotes mitochondrial biogenesis in renal ischemia-reperfusion injury. Apoptosis 23, 695-706.   DOI
12 Ishihara, N., Otera, H., Oka, T., and Mihara, K. (2013). Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxid. Redox Signal. 19, 389-399.   DOI
13 Ishimoto, Y. and Inagi, R. (2016). Mitochondria: a therapeutic target in acute kidney injury. Nephrol. Dial. Transplant. 31, 1062-1069.   DOI
14 Dietz, J.V., Bohovych, I., Viana, M.P., and Khalimonchuk, O. (2019). Proteolytic regulation of mitochondrial dynamics. Mitochondrion 49, 289-304.   DOI
15 MacVicar, T. and Langer, T. (2016). OPA1 processing in cell death and disease - the long and short of it. J. Cell Sci. 129, 2297-2306.   DOI
16 Aung, L.H.H., Li, R., Prabhakar, B.S., and Li, P. (2017). Knockdown of Mtfp1 can minimize doxorubicin cardiotoxicity by inhibiting Dnm1l-mediated mitochondrial fission. J. Cell. Mol. Med. 21, 3394-3404.   DOI
17 Bhargava, P. and Schnellmann, R.G. (2017). Mitochondrial energetics in the kidney. Nat. Rev. Nephrol. 13, 629-646.   DOI
18 Brooks, C., Wei, Q., Cho, S.G., and Dong, Z. (2009). Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J. Clin. Invest. 119, 1275-1285.   DOI
19 Brooks, C., Wei, Q., Feng, L., Dong, G., Tao, Y., Mei, L., Xie, Z.J., and Dong, Z. (2007). Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc. Natl. Acad. Sci. U. S. A. 104, 11649-11654.   DOI
20 Cribbs, J.T. and Strack, S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8, 939-944.   DOI
21 Emma, F., Montini, G., Parikh, S.M., and Salviati, L. (2016). Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol. 12, 267-280.   DOI
22 Frezza, C., Cipolat, S., Martins de Brito, O., Micaroni, M., Beznoussenko, G.V., Rudka, T., Bartoli, D., Polishuck, R.S., Danial, N.N., De Strooper, B., et al. (2006). OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177-189.   DOI
23 Funk, J.A. and Schnellmann, R.G. (2012). Persistent disruption of mitochondrial homeostasis after acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F853-F864.   DOI
24 Morita, M., Prudent, J., Basu, K., Goyon, V., Katsumura, S., Hulea, L., Pearl, D., Siddiqui, N., Strack, S., McGuirk, S., et al. (2017). mTOR controls mitochondrial dynamics and cell survival via MTFP1. Mol. Cell 67, 922-935.e5.   DOI
25 Mears, J.A., Lackner, L.L., Fang, S., Ingerman, E., Nunnari, J., and Hinshaw, J.E. (2011). Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat. Struct. Mol. Biol. 18, 20-26.   DOI
26 Mehta, R.L., Cerda, J., Burdmann, E.A., Tonelli, M., Garcia-Garcia, G., Jha, V., Susantitaphong, P., Rocco, M., Vanholder, R., Sever, M.S., et al. (2015). International Society of Nephrology's 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385, 2616-2643.   DOI
27 Mordas, A. and Tokatlidis, K. (2015). The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Acc. Chem. Res. 48, 2191-2199.   DOI
28 Perry, H.M., Huang, L., Wilson, R.J., Bajwa, A., Sesaki, H., Yan, Z., Rosin, D.L., Kashatus, D.F., and Okusa, M.D. (2018). Dynamin-related protein 1 deficiency promotes recovery from AKI. J. Am. Soc. Nephrol. 29, 194-206.   DOI
29 Robert, F. and Pelletier, J. (2009). Translation initiation: a critical signalling node in cancer. Expert Opin. Ther. Targets 13, 1279-1293.   DOI
30 Saxton, R.A. and Sabatini, D.M. (2017). mTOR signaling in growth, metabolism, and disease. Cell 169, 361-371.   DOI
31 Smirnova, E., Griparic, L., Shurland, D.L., and van der Bliek, A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256.   DOI
32 Suen, D.F., Norris, K.L., and Youle, R.J. (2008). Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577-1590.   DOI
33 Tondera, D., Czauderna, F., Paulick, K., Schwarzer, R., Kaufmann, J., and Santel, A. (2005). The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J. Cell Sci. 118, 3049-3059.   DOI
34 Sumida, M., Doi, K., Ogasawara, E., Yamashita, T., Hamasaki, Y., Kariya, T., Takimoto, E., Yahagi, N., Nangaku, M., and Noiri, E. (2015). Regulation of mitochondrial dynamics by dynamin-related protein-1 in acute cardiorenal syndrome. J. Am. Soc. Nephrol. 26, 2378-2387.   DOI
35 Szeto, H.H. (2017). Pharmacologic approaches to improve mitochondrial function in AKI and CKD. J. Am. Soc. Nephrol. 28, 2856-2865.   DOI
36 Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521-11529.   DOI
37 Youle, R.J. and Karbowski, M. (2005). Mitochondrial fission in apoptosis. Nat. Rev. Mol. Cell Biol. 6, 657-663.   DOI
38 Tondera, D., Santel, A., Schwarzer, R., Dames, S., Giese, K., Klippel, A., and Kaufmann, J. (2004). Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J. Biol. Chem. 279, 31544-31555.   DOI
39 von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258-261.   DOI
40 Yan, R., Li, Y., Zhang, L., Xia, N., Liu, Q., Sun, H., and Guo, H. (2015). Augmenter of liver regeneration attenuates inflammation of renal ischemia/reperfusion injury through the NF-kappa B pathway in rats. Int. Urol. Nephrol. 47, 861-868.   DOI
41 Zhan, M., Brooks, C., Liu, F., Sun, L., and Dong, Z. (2013). Mitochondrial dynamics: regulatory mechanisms and emerging role in renal pathophysiology. Kidney Int. 83, 568-581.   DOI
42 Gandhi, C.R. (2012). Augmenter of liver regeneration. Fibrogenesis TissueRepair 5, 10.   DOI
43 Zoncu, R., Efeyan, A., and Sabatini, D.M. (2011). mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35.   DOI