• Title/Summary/Keyword: Mitochondrial Genome

검색결과 203건 처리시간 0.031초

Caution and Curation for Complete Mitochondrial Genome from Next-Generation Sequencing: A Case Study from Dermatobranchus otome (Gastropoda, Nudibranchia)

  • Do, Thinh Dinh;Choi, Yisoo;Jung, Dae-Wui;Kim, Chang-Bae
    • Animal Systematics, Evolution and Diversity
    • /
    • 제36권4호
    • /
    • pp.336-346
    • /
    • 2020
  • Mitochondrial genome is an important molecule for systematic and evolutionary studies in metazoans. The development of next-generation sequencing (NGS) technique has rapidly increased the number of mitogenome sequences. The process of generating mitochondrial genome based on NGS includes different steps, from DNA preparation, sequencing, assembly, and annotation. Despite the effort to improve sequencing, assembly, and annotation methods of mitogenome, the low quality and/or quantity sequence in the final map can still be generated through the work. Therefore, it is necessary to check and curate mitochondrial genome sequence after annotation for proofreading and feedback. In this study, we introduce the pipeline for sequencing and curation for mitogenome based on NGS. For this purpose, two mitogenome sequences of Dermatobranchus otome were sequenced by Illumina Miseq system with different amount of raw read data. Generated reads were targeted for assembly and annotation with commonly used programs. As abnormal repeat regions present in the mitogenomes after annotation, primers covering these regions were designed and conventional PCR followed by Sanger sequencing were performed to curate the mitogenome sequences. The obtained sequences were used to replace the abnormal region. Following the replacement, each mitochondrial genome was compared with the other as well as the sequences of close species available on the Genbank for confirmation. After curation, two mitogenomes of D. otome showed a typically circular molecule with 14,559 bp in size and contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes. The phylogenetic tree revealed a close relationship between D. otome and Tritonia diomea. The finding of this study indicated the importance of caution and curation for the generation of mitogenome from NGS.

Novel Mutations in Cholangiocarcinoma with Low Frequencies Revealed by Whole Mitochondrial Genome Sequencing

  • Muisuk, Kanha;Silsirivanit, Atit;Imtawil, Kanokwan;Bunthot, Suphawadee;Pukhem, Ake;Pairojkul, Chawalit;Wongkham, Sopit;Wongkham, Chaisiri
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1737-1742
    • /
    • 2015
  • Background: Mitochondrial DNA (mtDNA) mutations have been shown to be associated with cancer. This study explored whether mtDNA mutations enhance cholangiocarcinoma (CCA) development in individuals. Materials and Methods: The whole mitochondrial genome sequences of 25 CCA patient tissues were determined and compared to those of white blood cells from the corresponding individuals and 12 healthy controls. The mitochondrial genome was amplified using primers from Mitoseq and compared with the Cambridge Reference Sequence. Results: A total of 161 mutations were identified in CCA tissues and the corresponding white blood cells, indicating germline origins. Sixty-five (40%) were new. Nine mutations, representing those most frequently observed in CCA were tested on the larger cohort of 60 CCA patients and 55 controls. Similar occurrence frequencies were observed in both groups. Conclusions: While the correspondence between the cancer and mitochondrial genome mutation was low, it is of interest to explore the functions of the missense mutations in a larger cohort, given the possibility of targeting mitochondria for cancer markers and therapy in the future.

Complete Mitochondrial Genome of Anoplocephala magna Solidifying the Species

  • Guo, Aijiang
    • Parasites, Hosts and Diseases
    • /
    • 제54권3호
    • /
    • pp.369-373
    • /
    • 2016
  • The 2 species of the genus Anoplocephala (Anoplocephalidae), A. perfoliata and A. magna, are among the most important equine cestode parasites. However, there is little information about their differences at the molecular level. The present study revealed that the mitochondrial (mt) genome of A. magna was 13,759 bp in size and 700 bp shorter than that of A. perfoliata. The 2 species includes 2 rRNA, 22 tRNA, and 12 protein-coding genes each. The size of each of the 36 genes was the same as that of A. perfoliata, except for cox1, rrnL, trnC, trnS2(UCN), trnG, trnH, trnQ, and trnP. In the full mitochondrial genome, the sequence similarity was 87.1%. The divergence in the nucleotide and amino acid sequences of individual protein-coding genes ranged from 11.1% to 16% and 6.8% to 16.4%, respectively. The 2 non-coding regions of the mt genome of A. magna were 199 bp and 271 bp in length, while the equivalent regions in A. perfoliata were 875 bp and 276 bp, respectively. The results of this study support the proposal that A. magna and A. perfoliata are separate species, consistent with previous morphological analyses.

Molecular Data Concerning Alloploid Character and the Origin of Chloroplast and Mitochondrial Genomes in the Liverwort Species Pellia borealis

  • Pacak, Andrezej
    • Journal of Plant Biotechnology
    • /
    • 제2권2호
    • /
    • pp.101-108
    • /
    • 2000
  • The liverwort Pellia borealis is a diploid, monoecious, allopolypliod species (n=18) that as it was postulated, originated after hybridization and duplication of chromosome sets of two cryptic species: Pellia epiphylta-species N (n=9) and Pellia epiphylla-species 5 (n=9). Our recent results have supported the allopolyploid origin of P.borealis. We have shown that the nuclear genome of P.borealis consists of two nuclear genomes: one derived from P.epiphylla-species N and the other from P.epiphylla-species 5. In this paper we show the origin of chloroplast and mitochondrial genomes in an allopolyploid species P.borealis. To our knowledge there is no information concerning the way of mitochondria and chloroplast inheritance in Brophyta. Using an allopolyploid species of p. borealis as a model species we have decided to look into chloroplast and mitochondrial genomes of P.borealis, P.epiphylla-species N and P.epiphylla-species S for nucleotide sequences that would allow us to differentiate between both cryptic species and to identify the origin of organelle genomes in the alloploid species. We have amplified and sequenced a chloroplast $tRNA^{Leu}$ gene (anticodon UAA) containing an intron that has shown to be highly variable in a nucleotide sequence and used for plant population genetics. Unfortunately these sequences were identical in all three liverwort species tested. The analysis of the nucleotide sequence of chloroplast, an intron containing $tRNA^{Gly}$ (anticodon UCC) genes, gave expected results: the intron nucleotide sequence was identical in the case of both P.borealis and P.epiphyllaspecies N, while the sequence obtained from P.epiphyllasperies S was different in several nucleotide positions. These results were confirmed by the nucleotide sequence of another chloroplast molecular marker the chloroplast, an intron-contaning $tRNA^{Lys}$ gene (anticodon UUU). We have also sequenced mitochondrial, an intron-containing $tRNA^{Ser}$ gene (anticodon GCU) in all three liverwort species. In this case we found that, as in the case of the chloroplast genome, P.borealis mitochondrial genome was inherited from P.epiphylla-species N. On the basis of our results we claim that both organelle genomes of P.borealis derived from P.epiphylla-species N.

  • PDF

Genetics of Mitochondrial Myopathies

  • Shin, Jin-Hong;Kim, Dae-Seong
    • Journal of Genetic Medicine
    • /
    • 제10권1호
    • /
    • pp.20-26
    • /
    • 2013
  • Mitochondrion is an intracellular organelle with its own genome. Its function in cellular metabolism is indispensable that mitochondrial dysfunction gives rise to multisystemic failure. The manifestation is most prominent with tissues of high energy demand such as muscle and nerve. Mitochondrial myopathies occur not only by mutations in mitochondrial genome, but also by defects in nuclear genes or secondarily by toxic insult on mitochondrial replication. Currently curative treatment modality does not exist and symptomatic treatment remains mainstay. Administration of L-arginine holds great promise according to the recent reports. Advances in mitochondrial RNA import might enable a new therapeutic strategy.

Complete Mitochondrial Genome of Brown Marmorated Stink Bug Halyomorpha halys (Hemiptera: Pentatomidae), and Phylogenetic Relationships of Hemipteran Suborders

  • Lee, Wonhoon;Kang, Joongnam;Jung, Chansik;Hoelmer, Kim;Lee, Si Hyeock;Lee, Seunghwan
    • Molecules and Cells
    • /
    • 제28권3호
    • /
    • pp.155-165
    • /
    • 2009
  • The newly sequenced complete mitochondrial genome of the brown marmorated stink bug, Halyomorpha halys($St{\aa}l$) (Hemiptera: Pentatomidae), is a circular molecule of 16,518 bp with a total A+T content of 76.4% and two extensive repeat regions in A+T rich region. Nucleotide composition and codon usage of H. halys are about average when compared with values observed in 19 other published hemipteran mitochondrial genomes. Phylogenetic analyses using these 20 hemipteran mitochondrial genomes support the currently accepted hypothesis that suborders Heteroptera and Auchenorrhyncha form a monophyletic group. The mitochondrial gene arrangements of the 20 genomes are also consistent with our results.

Genome-wide single-nucleotide polymorphism data and mitochondrial hypervariable region 1 nucleotide sequence reveal the origin of the Akhal-Teke horse

  • Zhoucairang Kang;Jinping Shi;Ting Liu;Yong Zhang;Quanwei Zhang;Zhe Liu;Jianfu Wang;Shuru Cheng
    • Animal Bioscience
    • /
    • 제36권10호
    • /
    • pp.1499-1507
    • /
    • 2023
  • Objective: The study investigated the origin of the Akhal-Teke horse using genome-wide single-nucleotide polymorphism (SNP) data and mitochondrial hypervariable region 1 (HVR-1) nucleotide sequences Methods: Genome-wide SNP data from 22 breeds (481 horses) and mitochondrial HVR-1 sequences from 24 breeds (544 sequences) worldwide to examine the origin of the Akhal-Teke horse. The data were analyzed using principal component analysis, linkage disequilibrium analysis, neighbor-joining dendrograms, and ancestry inference to determine the population relationships, ancestral source, genetic structure, and relationships with other varieties. Results: A close genetic relationship between the Akhal-Teke horse and horses from the Middle East was found. Analysis of mitochondrial HVR-1 sequences showed that there were no shared haplotypes between the Akhal-Teke and Tarpan horses, and the mitochondrial data indicated that the Akhal-Teke horse has not historically expanded its group. Ancestral inference suggested that Arabian and Caspian horses were the likely ancestors of the Akhal-Teke horse. Conclusion: The Akhal-Teke horse originated in the Middle East.

Mitochondrial Genome Sequences of Spirometra erinaceieuropaei and S. decipiens (Cestoidea: Diphyllobothriidae)

  • Eom, Keeseon S.;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kim, Kyu-Heon;Jeon, Hyeong-Kyu
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.455-463
    • /
    • 2015
  • The present study was performed to compare the mitochondrial genomes between 2 Spirometra tapeworms, Spirometra erinaceieuropaei and Spirometra decipiens (Cestoidea: Diphyllobothriidae), which larval stages are important etiological agents of sparganosis in humans. For each species, the full mitochondrial genome was amplified in 8 overlapping fragments using total genomic DNA purified from a single worm as the template. The mitochondrial genomes were 13,643 bp (S. erinaceieuropaei) and 13,641 bp (S. decipiens) in length and contained 36 genes; 12 protein-coding genes, 2 ribosomal RNA (rRNA, small and large subunits), and 22 transfer RNAs (tRNAs). The 12 protein-coding genes constituted 10,083 bp (S. erinaceieuropaei) and 10,086 bp (S. decipiens) of their respective mitochondrial genomes. The tRNA genes, ranging in length from 56 to 70 bp, were identified based on putative secondary structures such as the typical cloverleaf shape. A total of 23 intergenic sequences, varying from 1 to 204 bp in size, were interspersed in S. erinaceieuropaei (total, 504 bp) and S. decipiens (total, 496 bp) mtDNA. The 12 protein-coding genes of S. erinaceieuropaei and S. decipiens differed by 12.4%, whereas the overall difference in mtDNA sequence between S. erinaceieuropaei and S. decipiens was 12.9%. Thus, from the standpoint of the mitochondrial genome, S. decipiens represents a valid species that can be distinguished from S. erinaceieuropaei.

Complete Mitochondrial Genome of Haplorchis taichui and Comparative Analysis with Other Trematodes

  • Lee, Dongmin;Choe, Seongjun;Park, Hansol;Jeon, Hyeong-Kyu;Chai, Jong-Yil;Sohn, Woon-Mok;Yong, Tai-Soon;Min, Duk-Young;Rim, Han-Jong;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • 제51권6호
    • /
    • pp.719-726
    • /
    • 2013
  • Mitochondrial genomes have been extensively studied for phylogenetic purposes and to investigate intra- and interspecific genetic variations. In recent years, numerous groups have undertaken sequencing of platyhelminth mitochondrial genomes. Haplorchis taichui (family Heterophyidae) is a trematode that infects humans and animals mainly in Asia, including the Mekong River basin. We sequenced and determined the organization of the complete mitochondrial genome of H. taichui. The mitochondrial genome is 15,130 bp long, containing 12 protein-coding genes, 2 ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). Like other trematodes, it does not encode the atp8 gene. All genes are transcribed from the same strand. The ATG initiation codon is used for 9 protein-coding genes, and GTG for the remaining 3 (nad1, nad4, and nad5). The mitochondrial genome of H. taichui has a single long non-coding region between trnE and trnG. H. taichui has evolved as being more closely related to Opisthorchiidae than other trematode groups with maximal support in the phylogenetic analysis. Our results could provide a resource for the comparative mitochondrial genome analysis of trematodes, and may yield genetic markers for molecular epidemiological investigations into intestinal flukes.