DOI QR코드

DOI QR Code

Genetics of Mitochondrial Myopathies

  • Shin, Jin-Hong (Department of Neurology, Pusan National University Yangsan Hospital) ;
  • Kim, Dae-Seong (Department of Neurology, Pusan National University Yangsan Hospital)
  • Received : 2013.05.27
  • Accepted : 2013.06.22
  • Published : 2013.06.30

Abstract

Mitochondrion is an intracellular organelle with its own genome. Its function in cellular metabolism is indispensable that mitochondrial dysfunction gives rise to multisystemic failure. The manifestation is most prominent with tissues of high energy demand such as muscle and nerve. Mitochondrial myopathies occur not only by mutations in mitochondrial genome, but also by defects in nuclear genes or secondarily by toxic insult on mitochondrial replication. Currently curative treatment modality does not exist and symptomatic treatment remains mainstay. Administration of L-arginine holds great promise according to the recent reports. Advances in mitochondrial RNA import might enable a new therapeutic strategy.

Keywords

References

  1. Boyer PD. A research journey with ATP synthase.J Biol Chem 2002;277: 39045-61. https://doi.org/10.1074/jbc.X200001200
  2. Chinnery PF, Thorburn DR, Samuels DC, White SL, Dahl HM, Turnbull DM, et al. The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both?Trends Genet 2000;16:500-5. https://doi.org/10.1016/S0168-9525(00)02120-X
  3. Chinnery PF, DiMauro S, Shanske S, Schon EA, Zeviani M, Mariotti C, et al. Risk of developing a mitochondrial DNA deletion disorder. Lancet 2004;364:592-6. https://doi.org/10.1016/S0140-6736(04)16851-7
  4. Morava E, van den Heuvel L, Hol F, de Vries MC, Hogeveen M, Rodenburg RJ, et al. Mitochondrial disease criteria: diagnostic applications in children. Neurology 2006;67:1823-6. https://doi.org/10.1212/01.wnl.0000244435.27645.54
  5. Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 2002;59:1406-11. https://doi.org/10.1212/01.WNL.0000033795.17156.00
  6. Ruiz-Pesini E, Lott MT, Procaccio V, Poole JC, Brandon MC, Mishmar D, et al. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res 2007;35(Database issue):D823-8. https://doi.org/10.1093/nar/gkl927
  7. Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457-65. https://doi.org/10.1038/290457a0
  8. Davis RL, Sue CM. The genetics of mitochondrial disease. Semin Neurol 2011;31:519-30. https://doi.org/10.1055/s-0031-1299790
  9. Brown GK. Bottlenecks and beyond: mitochondrial DNA segregation in health and disease. J Inherit Metab Dis 1997;20:2-8. https://doi.org/10.1023/A:1005336903888
  10. Egger J, Wilson J. Mitochondrial inheritance in a mitochondrially mediated disease. N Engl J Med 1983;309:142-6. https://doi.org/10.1056/NEJM198307213090304
  11. Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Engl J Med 2002;347:576-80. https://doi.org/10.1056/NEJMoa020350
  12. Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs. Nat Med 1995;1:417-22. https://doi.org/10.1038/nm0595-417
  13. Arnaudo E, Dalakas M, Shanske S, Moraes CT, DiMauro S, Schon EA. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine- induced myopathy. Lancet 1991;337:508-10. https://doi.org/10.1016/0140-6736(91)91294-5
  14. Lewis W, Day BJ, Copeland WC. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov 2003;2: 812-22. https://doi.org/10.1038/nrd1201
  15. Lewis W, Simpson JF, Meyer RR. Cardiac mitochondrial DNA polymerasegamma is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ Res1994;74:344-8. https://doi.org/10.1161/01.RES.74.2.344
  16. Kiyomoto BH, Tengan CH, Godinho RO. Effects of short-term zidovudine exposure on mitochondrial DNA content and succinate dehydrogenase activity of rat skeletal muscle cells. J Neurol Sci 2008;268:33-9. https://doi.org/10.1016/j.jns.2007.10.026
  17. Yoo BC, Kim JH, Kim TH, Koh KC, Um SH, Kim YS,et al. Clevudine is highly efficacious in hepatitis B e antigen-negative chronic hepatitis B with durable off-therapy viral suppression. Hepatology 2007;46:1041-8. https://doi.org/10.1002/hep.21800
  18. Seok JI, Lee DK, Lee CH, Park MS, Kim SY, Kim HS, et al. Long-term therapy with clevudine for chronic hepatitis B can be associated with myopathy characterized by depletion of mitochondrial DNA. Hepatology 2009;49:2080-6. https://doi.org/10.1002/hep.22959
  19. Kim DS, Jung DS, Park KH, Kim IJ, Kim CM, Lee WH, et al. Histochemical and molecular genetic study of MELAS and MERRF in Koreanpatients. J Korean Med Sci 2002;17:103-12. https://doi.org/10.3346/jkms.2002.17.1.103
  20. Mita S, Tokunaga M, Kumamoto T, Uchino M, Nonaka I, Ando M. Mitochondrial DNA mutation and muscle pathology in mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes. Muscle Nerve Suppl 1995;3:S113-8.
  21. Goto Y. Clinical features of MELAS and mitochondrial DNA mutations. Muscle Nerve Suppl 1995;3:S107-12.
  22. Lindal S, Lund I, Torbergsen T, Aasly J, Mellgren SI, Borud O, et al. Mitochondrial diseases and myopathies: a series of muscle biopsy specimens with ultrastructural changes in the mitochondria. Ultrastruct Pathol 1992;16:263-75. https://doi.org/10.3109/01913129209061355
  23. Pavlakis SG, Phillips PC, DiMauro S, De Vivo DC, Rowland LP. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: adistinctive clinical syndrome. Ann Neurol 1984;16:481-8. https://doi.org/10.1002/ana.410160409
  24. Yatsuga S, Povalko N, Nishioka J,Katayama K, Kakimoto N, Matsuishi T, et al. MELAS: anationwide prospective cohort study of 96 patients in japan. Biochim Biophys Acta 2012;1820:619-24. https://doi.org/10.1016/j.bbagen.2011.03.015
  25. Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990;348:651-3. https://doi.org/10.1038/348651a0
  26. Goto Y, Nonaka I, Horai S. A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and strokelike episodes (MELAS). Biochim Biophys Acta 1991;1097:238-40. https://doi.org/10.1016/0925-4439(91)90042-8
  27. Deschauer M, Tennant S, Rokicka A, He L, Kraya T, Turnbull DM, et al. MELAS associated with mutations in the POLG1 gene. Neurology 2007; 68:1741-2. https://doi.org/10.1212/01.wnl.0000261929.92478.3e
  28. Finsterer J. Inherited mitochondrial neuropathies. J Neurol Sci 2011; 304:9-16. https://doi.org/10.1016/j.jns.2011.02.012
  29. Roy MD, Wittenhagen LM, Kelley SO. Structural probing of a pathogenic tRNA dimer. RNA2005;11:254-60.
  30. Koga Y, Povalko N, Nishioka J, Katayama K, Yatsuga S, Matsuishi T. Molecular pathology of MELAS and L-arginine effects. Biochim Biophys Acta 2012;1820:608-14. https://doi.org/10.1016/j.bbagen.2011.09.005
  31. Fukuhara N, Tokiguchi S, Shirakawa K, Tsubaki T. Myoclonus epilepsy associated with ragged-red fibres (mitochondrial abnormalities ): disease entity or a syndrome? Light-and electron-microscopic studies of two cases and review of literature. J Neurol Sci 1980;47:117-33. https://doi.org/10.1016/0022-510X(80)90031-3
  32. Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 1990;61:931-7. https://doi.org/10.1016/0092-8674(90)90059-N
  33. Ozawa M, Nishino I, Horai S, Nonaka I, Goto YI. Myoclonus epilepsy associated with ragged-red fibers: a G-to-A mutation at nucleotide pair 8363 in mitochondrial tRNA(Lys) in two families. Muscle Nerve 1997;20:271-8. https://doi.org/10.1002/(SICI)1097-4598(199703)20:3<271::AID-MUS2>3.0.CO;2-8
  34. Silvestri G, Moraes CT, Shanske S, Oh SJ, DiMauro S. A new mtDNA mutation in the tRNA(Lys) gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 1992;51:1213-7.
  35. Hammans SR, Sweeney MG, Brockington M, Lennox GG, Lawton NF, Kennedy CR, et al. The mitochondrial DNA transfer RNA(Lys)A-->G(8344) mutation and the syndrome of myoclonic epilepsy with ragged red fibres (MERRF). Relationship of clinical phenotype to proportion of mutant mitochondrial DNA. Brain 1993;116:617-32. https://doi.org/10.1093/brain/116.3.617
  36. Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, Chow CW, et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 1996;39:343-51. https://doi.org/10.1002/ana.410390311
  37. Horvath R, Kley RA, Lochmüller H, Vorgerd M. Parkinson syndrome, neuropathy, and myopathy caused by the mutation A8344G (MERRF) in tRNALys. Neurology 2007;68:56-8. https://doi.org/10.1212/01.wnl.0000250334.48038.7a
  38. Deschauer M, Wieser T, Neudecker S, Lindner A, Zierz S. Mitochondrial 3243 A-->G mutation (MELAS mutation) associated with painful muscle stiffness. Neuromuscul Disord 1999;9:305-7. https://doi.org/10.1016/S0960-8966(99)00019-X
  39. Mariotti C, Savarese N, Suomalainen A, Rimoldi M, Comi G, Prelle A, et al. Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3243G mutation of mitochondrial DNA. J Neurol 1995;242:304-12. https://doi.org/10.1007/BF00878873
  40. Zeviani M, Servidei S, Gellera C, Bertini E, DiMauro S, DiDonato S. An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 1989;339:309-11. https://doi.org/10.1038/339309a0
  41. Van Goethem G, Dermaut B, Löfgren A, Martin JJ, Van Broeckhoven C. Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 2001;28:211-2. https://doi.org/10.1038/90034
  42. Longley MJ, Clark S, Yu Wai Man C, Hudson G, Durham SE, Taylor RW, et al. Mutant POLG2 disrupts DNA polymerase gamma subunits and causes progressive external ophthalmoplegia. Am J Hum Genet 2006; 78:1026-34. https://doi.org/10.1086/504303
  43. Kaukonen J, Juselius JK, Tiranti V, Kyttälä A, Zeviani M, Comi GP, et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 2000;289:782-5. https://doi.org/10.1126/science.289.5480.782
  44. Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP, Tariq M, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001;28:223-31. https://doi.org/10.1038/90058
  45. Tyynismaa H, Ylikallio E, Patel M, Molnar MJ, Haller RG, Suomalainen A. A heterozygous truncating mutation in RRM2B causes autosomaldominant progressive external ophthalmoplegia with multiple mtDNA deletions. Am J Hum Genet 2009;85:290-5. https://doi.org/10.1016/j.ajhg.2009.07.009
  46. Ronchi D, Di Fonzo A, Lin W, Bordoni A, Liu C, Fassone E, et al. Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am J Hum Genet 2013;92:293-300. https://doi.org/10.1016/j.ajhg.2012.12.014
  47. Pfeffer G, Sirrs S, Wade NK, Mezei MM. Multisystem disorder in lateonset chronic progressive external ophthalmoplegia. Can J Neurol Sci 2011;38:119-23. https://doi.org/10.1017/S031716710001115X
  48. Park KP, Kim HS, Kim ES, Park YE, Lee CH, Kim DS. SLC25A4 and C10ORF2 mutations in Autosomal Dominant Progressive External Ophthalmoplegia. J Clin Neurol 2011;7:25-30. https://doi.org/10.3988/jcn.2011.7.1.25
  49. Pfeffer G, Chinnery PF. Diagnosis and treatment of mitochondrial myopathies. Ann Med 2013;45:4-16. https://doi.org/10.3109/07853890.2011.605389
  50. Yoneda M, Ikawa M, Arakawa K, Kudo T, Kimura H, Fujibayashi Y, et al. In vivo functional brain imaging and a therapeutic trial of L-arginine in MELAS patients. Biochim Biophys Acta 2012;1820:615-8. https://doi.org/10.1016/j.bbagen.2011.04.018
  51. Yoneda M, Maeda M, Kimura H, Fujii A, Katayama K, Kuriyama M. Vasogenic edema on MELAS: a serial study with diffusion-weighted MR imaging. Neurology 1999;53:2182-4. https://doi.org/10.1212/WNL.53.9.2182
  52. Koga Y, Akita Y, Nishioka J, Yatsuga S, Povalko N, Tanabe Y, et al. L-arginine improves the symptoms of strokelike episodes in MELAS. Neurology 2005;64:710-2. https://doi.org/10.1212/01.WNL.0000151976.60624.01
  53. Arakawa K, Kudo T, Ikawa M, Morikawa N, Kawai Y, Sahashi K, et al. Abnormal myocardial energy-production state in mitochondrial cardiomyopathy and acute response to L-arginine infusion. C-11 acetate kinetics revealed by positron emission tomography. Circ J 2010; 74:2702-11. https://doi.org/10.1253/circj.CJ-10-0044
  54. Cohen J, Scott R, Alikani M, Schimmel T, Munné S, Levron J, et al. Ooplasmic transfer in mature human oocytes. Mol Hum Reprod 1998;4: 269-80. https://doi.org/10.1093/molehr/4.3.269
  55. Yabuuchi A, Beyhan Z, Kagawa N, Mori C, Ezoe K, Kato K, et al. Prevention of mitochondrial disease inheritance by assisted reproductive technologies: prospects and challenges. Biochim Biophys Acta 2012;1820: 637-42. https://doi.org/10.1016/j.bbagen.2011.10.014
  56. Kyriakouli DS, Boesch P, Taylor RW, Lightowlers RN. Progress and prospects: gene therapy for mitochondrial DNA disease. Gene Ther 2008;15:1017-23. https://doi.org/10.1038/gt.2008.91
  57. Wang G, Shimada E, Zhang J, Hong JS, Smith GM, Teitell MA, et al. Correcting human mitochondrial mutations with targeted RNA import. Proc Natl Acad Sci U S A 2012;109:4840-5. https://doi.org/10.1073/pnas.1116792109