DOI QR코드

DOI QR Code

Mitochondrial Genome Sequences of Spirometra erinaceieuropaei and S. decipiens (Cestoidea: Diphyllobothriidae)

  • Eom, Keeseon S. (Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine) ;
  • Park, Hansol (Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine) ;
  • Lee, Dongmin (Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine) ;
  • Choe, Seongjun (Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine) ;
  • Kim, Kyu-Heon (Ministry of Food and Drug Safety) ;
  • Jeon, Hyeong-Kyu (Department of Parasitology, Medical Research Institute and Parasite Resource Bank, Chungbuk National University School of Medicine)
  • Received : 2015.04.23
  • Accepted : 2015.06.30
  • Published : 2015.08.31

Abstract

The present study was performed to compare the mitochondrial genomes between 2 Spirometra tapeworms, Spirometra erinaceieuropaei and Spirometra decipiens (Cestoidea: Diphyllobothriidae), which larval stages are important etiological agents of sparganosis in humans. For each species, the full mitochondrial genome was amplified in 8 overlapping fragments using total genomic DNA purified from a single worm as the template. The mitochondrial genomes were 13,643 bp (S. erinaceieuropaei) and 13,641 bp (S. decipiens) in length and contained 36 genes; 12 protein-coding genes, 2 ribosomal RNA (rRNA, small and large subunits), and 22 transfer RNAs (tRNAs). The 12 protein-coding genes constituted 10,083 bp (S. erinaceieuropaei) and 10,086 bp (S. decipiens) of their respective mitochondrial genomes. The tRNA genes, ranging in length from 56 to 70 bp, were identified based on putative secondary structures such as the typical cloverleaf shape. A total of 23 intergenic sequences, varying from 1 to 204 bp in size, were interspersed in S. erinaceieuropaei (total, 504 bp) and S. decipiens (total, 496 bp) mtDNA. The 12 protein-coding genes of S. erinaceieuropaei and S. decipiens differed by 12.4%, whereas the overall difference in mtDNA sequence between S. erinaceieuropaei and S. decipiens was 12.9%. Thus, from the standpoint of the mitochondrial genome, S. decipiens represents a valid species that can be distinguished from S. erinaceieuropaei.

Keywords

References

  1. Mueller JF. A repartition of the genus Diphyllobothrium. J Parasitol 1937; 23: 308-310. https://doi.org/10.2307/3272427
  2. Faust EC, Campbell HE, Kellogg CR. Morphological and biological studies on the species of Diphyllobothrium in China. Am J Hyg 1929; 9: 560-583.
  3. Le TH, Blair D, McManus DP. Mitochondrial genomes of parasitic flateworms. Trends Parasitol 2002; 18: 206-213. https://doi.org/10.1016/S1471-4922(02)02252-3
  4. Jeon HK, Eom KS. Molecular approaches to Taenia asiatica. Korean J Parasitol 2013; 51: 1-8. https://doi.org/10.3347/kjp.2013.51.1.1
  5. Park JK, Kim KH, Kang SH, Jeon HK, Kim JH, Littlewood DTJ, Eom KS. Characterization of the mitochondrial genome of Diphyllobothrium latum (Cestoda: Pseudophyllidea)-implications for the phylogeny of eucestodes. Parasitology 2007; 134: 749-759. https://doi.org/10.1017/S003118200600206X
  6. Kim KH, Jeon HK, Kang S, Sultana T, Kim GJ, Eom KS, Park JK. Characterization of the complete mitochondrial genome of Diphyllobothrium nihonkaiense (Diphyllobothriidae: Cestoda), and development of molecular markers for differentiating fish tapeworms. Mol Cells 2007; 23: 379-390.
  7. Liu GH, Li C, Yuan J, Zhou DH, Xiong RC, Lin RQ, Zou FC, Zhu XQ. Characterization of the complete mitochondrial genome sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae) from China. Int J Biol Sci 2012; 8: 640-649. https://doi.org/10.7150/ijbs.4096
  8. Zhu XQ, Beveridge I, Berger L, Barton D, Gasser RB. Single-strand conformation polymorphism-based analysis reveals genetic variation within Spirometra erinacei (Cestoda: Pseudophyllidea) from Australia. Mol Cell Probes 2002; 16: 159-165. https://doi.org/10.1006/mcpr.2001.0406
  9. Liu W, Liu GH, Li F, He DS, Wang T, Sheng XF, Zeng DL, Yang FF, Liu Y. Sequence variability in three mitochondrial DNA regions of Spirometra erinaceieuropaei spargana of human and animal health significance. J Helminthol 2011; 1-5.
  10. Kokaze A, Miyadera H, Kita K, Machinnami R, Noya O, de Noya BA, Okamoto M, Horii T, Kojima S. Phylogenetic identification of Sparganum proliferum as a pseudophyllidean cestode. Parasitol Int 1997; 46: 271-279. https://doi.org/10.1016/S1383-5769(97)00037-8
  11. Jeon HK, Kim KH, Eom KS. Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T. solium and T. asiatica. Parasitol Int 2007; 56: 243-246. https://doi.org/10.1016/j.parint.2007.04.001
  12. Lowe T, Eddy SR. tRNAscan-SE: a program improved detection of transfer DNA genes in genomic sequence. Nuclei Acids Res 1997; 25: 955-964. https://doi.org/10.1093/nar/25.5.0955
  13. Matzura O, Wennborg A. RNAdraw: an integrated program for RNA secondary structure calculation and analysis under 32-bit Microsoft Windows. Comput Appl Biosci (CABIOS) 1996; 12: 247-249.
  14. Swofford DL. Paup*: phylogenetic analysis using parsimony (* and other methods). Version 4. Sunderland, Massachusetts, USA. Sinauer Associates. 2003.
  15. Huelsenbeck JP, Ronquist F. MPBAYES: Bayesian inference of phylogenetic tree. Bioinformatics 2001; 8: 754-755
  16. Jeon HK, Park HS, Lee DM, Choe SJ, Kim KH, Huh S, Sohn WM, Chai JY, Eom KS. Human infections with Spirometra decipiens plerocercoids identified by morphologic and genetic analyses in Korea. Korean J Parasitol 2015; 53: 299-305. https://doi.org/10.3347/kjp.2015.53.3.299

Cited by

  1. Rapid identification of nine species of diphyllobothriidean tapeworms by pyrosequencing vol.6, pp.None, 2016, https://doi.org/10.1038/srep37228
  2. Genetic Identification of Spirometra decipiens Plerocercoids in Terrestrial Snakes from Korea and China vol.54, pp.2, 2015, https://doi.org/10.3347/kjp.2016.54.2.181
  3. Molecular Detection of Spirometra decipiens in the United States vol.54, pp.4, 2015, https://doi.org/10.3347/kjp.2016.54.4.503
  4. Comparative mitochondrial genomics among Spirometra (Cestoda: Diphyllobothriidae) and the molecular phylogeny of related tapeworms vol.117, pp.None, 2017, https://doi.org/10.1016/j.ympev.2017.06.003
  5. Spirometra decipiens (Cestoda: Diphyllobothriidae) Collected in A Heavily Infected Stray Cat from the Republic of Korea vol.56, pp.1, 2015, https://doi.org/10.3347/kjp.2018.56.1.87
  6. Differential Diagnosis of Human Sparganosis Using Multiplex PCR vol.56, pp.3, 2015, https://doi.org/10.3347/kjp.2018.56.3.295
  7. Complete Sequence of the Mitochondrial Genome of Spirometra ranarum: Comparison with S. erinaceieuropaei and S. decipiens vol.57, pp.1, 2015, https://doi.org/10.3347/kjp.2019.57.1.55
  8. Development of EST-derived microsatellite markers to investigate the population structure of sparganum - the causative agent of zoonotic sparganosis vol.146, pp.7, 2015, https://doi.org/10.1017/s0031182019000222
  9. Mitochondrial DNA Sequence Variability of Spirometra Species in Asian Countries vol.57, pp.5, 2019, https://doi.org/10.3347/kjp.2019.57.5.481
  10. Comparative Characterization of Mitogenomes From Five Orders of Cestodes (Eucestoda: Tapeworms) vol.12, pp.None, 2015, https://doi.org/10.3389/fgene.2021.788871
  11. Insight into One Health Approach: Endoparasite Infections in Captive Wildlife in Bangladesh vol.10, pp.2, 2015, https://doi.org/10.3390/pathogens10020250