• 제목/요약/키워드: Mission-Mode

검색결과 132건 처리시간 0.025초

Development of Aircraft Mission Performance Analysis Program

  • Lee, Hyunseok;Lee, Hyungjoon;Kwak, Einkeun;Lee, Seungsoo;Bae, Seungho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.162-171
    • /
    • 2013
  • A general purpose aircraft mission performance analysis program has been developed. The program can be used in design mode or in analysis mode. Fuel weight for a given mission profile can be estimated when the design mode is chosen, while mission time or mission range for a given fuel can be estimated when the analysis mode is chosen. The mission analysis program is written with JAVA and includes GUI(Graphic User Interface) for users' conveniences. With a proper combination of databases for propulsion, aerodynamics and weight, the program can be configured to compute the performance of any type of aircraft. The program is validated by comparing its results with the results of a well known performance analysis program by ADD(Agency for Defense Development).

천체역학적 방법을 이용한 무궁화위성의 궤도전이 모의 실험

  • 장홍술;최규홍
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 1993년도 한국우주과학회보 제2권2호
    • /
    • pp.12-12
    • /
    • 1993
  • 95년 발사 예정인 무궁화위성의 궤도전이에 필요한 조정 파라미터를 계산하기 위해 원지점 모터 점화 계획 S/W를 만들어서 결과에 대해 분석해 보았다. S/W는 Mission analysis mode와 Insert mode로 구성되는데, Mission analysis mode에서는 표류궤도를 얻기 위한 점화 파라미터를 구하는 것이고, Insert mode에서는 점화 파라미터를 이용해 표류궤도를 구하는 것이다.

  • PDF

FMEA에서 시간을 고려한 기대손실모형에 기초한 위험 평가 (Risk Evaluation Based on the Time Dependent Expected Loss Model in FMEA)

  • 권혁무;홍성훈;이민구
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.104-110
    • /
    • 2011
  • In FMEA, the risk priority number(RPN) is used for risk evaluation on each failure mode. It is obtained by multiplying three components, i.e., severity, occurrence, and detectability of the corresponding failure mode. Each of the three components are usually determined on the basis of the past experience and technical knowledge. But this approach is not strictly objective in evaluating risk of a given failure mode and thus provide somewhat less scientific measure of risk. Assuming a homogeneous Poisson process for occurrence of the failures and causes, we propose a more scientific approach to evaluation of risk in FMEA. To quantify severity of each failure mode, the mission period is taken into consideration for the system. If the system faces no failure during its mission period, there are no losses. If any failure occurs during its mission period, the losses corresponding to the failure mode incurs. A longer remaining mission period is assumed to incur a larger loss. Detectability of each failure mode is then incorporated into the model assuming an exponential probability law for detection time of each failure cause. Based on the proposed model, an illustrative example and numerical analyses are provided.

초소형 SAR 위성 S-STEP의 임무 시나리오에 따른 자세 제어 성능 예비 분석 (Preliminary Analysis on Characteristics of Attitude Control based on Operation Scenario of Small SAR Satellite Mission, S-STEP)

  • 이은지;박진한;송성찬;오현웅
    • 항공우주시스템공학회지
    • /
    • 제16권5호
    • /
    • pp.49-56
    • /
    • 2022
  • S-STEP 은 관심 지역의 시한성 긴급 표적 및 군사적 이상 징후를 감시하기 위한 초소형 SAR 위성 임무로, 고도 510 km의 저궤도에 32 대의 위성군을 배치하여 관심 지역에 대해 평균 재방문 주기를 30 분 이하로 달성한다. S-STEP의 임무 운용 모드는 표준 모드, 관측 모드, 통신 모드, 궤도유지 모드 등으로 구분되며, 이에 따라 자세 기동 모드 역시 초기 각속도 안정화, 태양 지향, 목표지점 및 지상국 지향, 추력 방향 유지 등으로 세분화된다. 이 연구에서는 S-STEP 임무 운용 시나리오의 예비 설계 결과와 위성체의 특성을 바탕으로 초기 각속도 안정화 및 태양 지향 모드와 관측 궤도 운용 모드에서의 자세 성능을 분석하였다. 분석 결과, 할당된 시간 이내에 필요한 자세 제어를 완료하여 각 모드에서 요구되는 자세 제어 정확도를 달성함을 확인하였다.

무인수상정에서의 원격운용통제 및 자율수준을 고려한 비상모드 알고리즘 (Emergency Mode Algorithm Considering Remote Operation/Control and Autonomous Level of Unmanned Surface Vehicle)

  • 윤종택;김용이;백재웅;임재현;유찬우;김정훈
    • 대한임베디드공학회논문지
    • /
    • 제12권5호
    • /
    • pp.319-330
    • /
    • 2017
  • In remote USV (Unmanned Surface Vehicle) maritime operation, the remote operation and control technic and autonomous control technic is required and the emergency mode algorithm is needed certainly for sailing and accomplishing various surveillance, reconnaissance, and underwater search missions of USV. In this paper, we review the countermeasures in emergency situation of the existing USV system (Barracuda) and propose the emergency mode algorithm considering the operation and control, and autonomous control level for the stable USV operation in case of emergency. We analyzed the autonomous control level in view of the mission complexity and environmental difficulty, and human interface, and verified the performance of the autonomous control level when we apply four emergency mode algorithms. It is expected that more stable and reliable operation and cotrol are possible if the proposed algorithm is applied to the environments requiring the various multi-mission USV sailing and mission achievement.

함정 전·평시 OMS/MP 설정 방법론 연구 및 사례 (A Wartime·Peacetime OMS/MP Analysis Model for a Naval Ship and Case Study)

  • 하성철;국정호
    • 한국군사과학기술학회지
    • /
    • 제15권5호
    • /
    • pp.660-666
    • /
    • 2012
  • The weapon system is getting more and more expensive, complex and smarter. Therefore, efficiently and effectively, it is important to operate the weapon system. OMS/MP is a document to quantify operational factors like as environment, mission, mode etc. It is important data to perform RAM analysis in early weapon development phase and operate better a weapon system. This paper present a process and framework of OMS/MP for a naval ship with a deep analysis of relevant domestic and abroad case studies. It propose OMS/MP analysis framework based on wartime scenario and mission area analysis. This result will contribute not only improvement for the availability of a naval ship but also enhancement of RAM analysis process.

한반도 지형에 적합한 SAR 위성의 운영모드 설계

  • 신재민;임정흠;김응현;이상곤;이상률
    • 항공우주기술
    • /
    • 제3권2호
    • /
    • pp.34-41
    • /
    • 2004
  • 본 논문에서는 SAR 위성시스템 설계에서 위성의 임무를 적절히 수행할 수 있는 위성의 운영모드 설계를 수행하였다. strip mode, scan mode, fine mode 3가지 모드에 대한 기본적인 고찰이 이루어졌으며 위성의 Look angle 결정을 위해 Incidence angle을 고려한 한반도의 지형적인 고찰도 함께 이루어졌다. 결정된 운영 모드를 이용하기 위해서 위성의 임무 수행지역을 정의하였고 정의된 수행지역은 위성의 레이다 자료의 송수신을 고려하여 결정 되었다. 현재 구성된 사항들은 추후 더욱 상세한 요구사항들과 조건들을 고려하면서 연구될 것이다.

  • PDF

인공위성의 Roll축 자세제어시스템 설계 및 검증 (Design and Verification of Satellite Attitude Control system for Roll Maneuver)

  • 김희섭;김기석;안재명;김유단;최완식
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.370-378
    • /
    • 1999
  • KOMPSAT is a three-axis stabilized light weight satellite, and one of the main mission objectives of the KOMPSAT is to conduct scientific and technological analysis in the areas of high resolution imaging and ocean color imaging. This kind of mission requires the satellite to roll up to 45 degrees. Bang-bang control for this rolling maneuver may activate the flexible modes, and therefore cause satellite pointing performance degradation. To deal with this problem, the roll attitude control system, especially for the science mode and maneuver mode of the KOMPSAT, is first verified by numerical simulation. And the open-loop control law for roll maneuver is proposed by use of series expansion and optimization. The proposed control law is applied to KOMPSAT to see its effectiveness.

  • PDF

Development of Electrical Power Subsystem of Cube Satellite STEP Cube Lab for Verification of Space-Relevant Technologies

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • 제3권2호
    • /
    • pp.31-37
    • /
    • 2016
  • STEP Cube Lab (Cube Laboratory for Space Technology Experimental Project) is a 1U standardized pico-class satellite. Its main mission objective is an on-orbit verification of five fundamental core space technologies. For assuring a successful missions of the STEP Cube Lab with five payloads, electrical power subsystem (EPS) shall sufficiently provide an electrical power to payloads and bus systems of the satellite during an entire mission life. In this study, a design process of EPS system was introduced including power budget analysis considering a mission orbit and various mission modes of the satellite. In conclusion, adequate EPS hardware in compliance with design requirements were selected. The effectiveness and mission capability of EPS architecture design were confirmed through an energy balance analysis (EBA).

The Design of Fault Tolerant Dual System and Real Time Fault Detection for Countdown Time Generating System

  • Kim, Jeong-Seok;Han, Yoo-Soo
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권10호
    • /
    • pp.125-133
    • /
    • 2016
  • In this paper, we propose a real-time fault monitoring and dual system design of the countdown time-generating system, which is the main component of the mission control system. The countdown time-generating system produces a countdown signal that is distributed to mission control system devices. The stability of the countdown signal is essential for the main launch-related devices because they perform reserved functions based on the countdown time information received from the countdown time-generating system. Therefore, a reliable and fault-tolerant design is required for the countdown time-generating system. To ensure system reliability, component devices should be redundant and faults should be monitored in real time to manage the device changeover from Active mode to Standby mode upon fault detection. In addition, designing different methods for mode changeover based on fault classification is necessary for appropriate changeover. This study presents a real-time fault monitoring and changeover system, which is based on the dual system design of countdown time-generating devices, as well as experiment on real-time fault monitoring and changeover based on fault inputs.