• Title/Summary/Keyword: Missile Autopilot Control

Search Result 55, Processing Time 0.028 seconds

Design of Missile Autopilot using Intelligent Control Techniques (지능 제어 기법을 이용한 유도탄 자동 조종 장치 설계)

  • 김윤식;한웅기;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.458-463
    • /
    • 1998
  • This paper presents an autopilot design method for STT missiles using the intelligent control technique and multiple controllers. The mixed $H_2/H_{\infty}$ control technique is applied for each controller design and the control gains are implemented by using the genetic searching algorithm. To facilitate automatic switching of multiple controllers under different operating conditions, an error based switching scheme is also combined with the multiple controllers at a higher level, which constitutes a hierarchical intelligent control system. It is shown via computer simulation that the proposed autopilot outperforms the conventional one.

  • PDF

Robust Missile Autopilot Design using Dynamic Inversion and PI Control (Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계)

  • Cho, Sung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.

A study on the gain-scheduling of missile autopilot (유도탄 제어기의 이득-스케듈링에 관한 연구)

  • 송찬호;김윤식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.355-360
    • /
    • 1991
  • A method of autopilot gain-scheduling is presented for missiles which have heavy aerodynamic coupling between pitch and yaw channels due to high maneuverability. Pitch and yaw, autopilot are cross-coupled, and their feedback gains are scheduled by total acceleration and bank angle for given Mach number and height. Bank angle information is obtained by using a simple estimator. By computer simulation, it is shown that the proposed method is superior to other existing methods.

  • PDF

Missile two-loop acceleration autopilot design based on 𝓛1 adaptive output feedback control

  • He, Shao-Ming;Lin, De-Fu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.74-81
    • /
    • 2014
  • This article documents the design of a novel two-loop acceleration autopilot based on $\mathcal{L}_1$ adaptive output feedback control for tail-controlled missiles. The inner loop is an adaptive angle-of-attack tracking loop and the outer loop is the traditional PI controller for error compensation. A systematic low-pass filter design procedure is provided for minimum phase system and is applied to the inner loop design while the parameters of the outer loop are obtained from the multi-objective optimization problem. The effectiveness of the proposed autopilot is verified through numerical simulations under various conditions.

Mixed Control with Aerodynamic Fin and Side Thruster Applied to Air Defense Missile

  • Chanho Song;Kim, Yoon-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.148.4-148
    • /
    • 2001
  • This paper shows an autopilot design example with simulation results for a medium range surface-to-air missile used to intercept fast maneuver targets. The missile is assumed to use both aerodynamic fins and side thrusters to achieve fast time response. The steady-state maneuver capability of the missile is assumed to be enough at high altitude to engage usual maneuvering targets. Side thruster is used to get an extremely rapid acceleration response at high altitude where the missile´s aerodynamic control effectiveness is weak. The strategy of control design is firstly to employ side thrusters to achieve a rapid response and then to hand-over the control to the aerodynamic fins to maintain the desired acceleration command in the steady state ...

  • PDF

A Practical Guidance Law Considering Missile Dynamics (유도탄 응답지연을 고려한 실용적인 유도법칙)

  • Kim, Jong-Ju;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.658-665
    • /
    • 2008
  • In this study a practical guidance law for missile guidance loop is established by considering the missile dynamics. Assuming the attitude controlled missile, several optimal guidance laws according to missile dynamical characteristics are derived by applying the optimal control theory and an effective guidance law in practical point is presented.

Design of missile roll controller based on the fuzzy logic (퍼지논리를 이용한 유도탄 롤 제어기 설계)

  • 전병율;남세규;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1063-1067
    • /
    • 1993
  • Fuzzy logic is applied to a roll autopilot for missiles. Fuzzy rules are made so that the response duplicates that of the conventional control law for some flight condition. A scaling factor of the fuzzy controller is then scheduled by the missile velocity and altitude information to cope with the variation of the roll dynamics from that flight condition. By computer simulations and calculation of the stability margin, it is shown that the fuzzy control is robuster than the conventional one over the flight envelope even though two control laws work similarly for some flight conditions.

  • PDF

Autopilot Design with Two Degree of Freedom $H_{\infty}$ Control Method (2자유도 $H_{\infty}$제어기를 이용한 비행체 자동조종장치 설계)

  • 최광진;황준하;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1304-1307
    • /
    • 1996
  • In this paper, we present a robust Two Degree of Freedom (TDF) $H_{\infty}$ controllers for a missile system. The feedback controller is designed to meet robust stability and disturbance rejection specifications while the prefilter is used to improve the robust model matching properties of the closed loop system. As the perturbed model, we use the normalized coprim factor perturbations. These controllers are designed using $H_{\infty}$ optimization procedures, and applied to a missile model via simulation.

  • PDF

Absolute Stability Margins in Missile Guidance Loop

  • Kim, Jong-Ju;Lyou, Joon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.460-466
    • /
    • 2008
  • This paper deals with the stability analysis of a missile guidance loop employing an integrated proportional navigation guidance law. The missile guidance loop is formulated as a closed-loop control system consisting of a linear time-invariant feed-forward block and a time-varying feedback gain. Based on the circle criterion, we have defined the concept of absolute stability margins and obtained the gain and phase margins for the system assuming 1 st order missile/autopilot dynamics. The correlation between the absolute stability margins and the margins derived from the frozen system analysis is also discussed.

Design of autopilot for a guided missile using model reference adaptive control (기준모델 적응제어에 의한 유도 비행체의 자동조종장치 설계에 관한 연구)

  • Lim, Ho;Park, Jeong-Il;Kim, Won-kyu;Park, Chong-Kug
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.499-502
    • /
    • 1989
  • This paper is concerned with the stability analysis and the design of an auto pilot using direct model reference adaptive control for BTT missile with unknown dynamics when subjected to the longitudinal and lateral gusts. A motion of BTT missile can be separated into the longtudinal and lateral motione. The proposed algorithm is introduced different leakage terms about each motion into adaptation so as to prevent drift of the adaptive gain and alleviate gust effects and cross-coupling. The algorithm is applied to the 6DOF motion of an EMRAAT missile.

  • PDF