DOI QRμ½”λ“œ

DOI QR Code

Missile two-loop acceleration autopilot design based on 𝓛1 adaptive output feedback control

  • Received : 2014.01.08
  • Accepted : 2014.03.15
  • Published : 2014.03.30

Abstract

This article documents the design of a novel two-loop acceleration autopilot based on $\mathcal{L}_1$ adaptive output feedback control for tail-controlled missiles. The inner loop is an adaptive angle-of-attack tracking loop and the outer loop is the traditional PI controller for error compensation. A systematic low-pass filter design procedure is provided for minimum phase system and is applied to the inner loop design while the parameters of the outer loop are obtained from the multi-objective optimization problem. The effectiveness of the proposed autopilot is verified through numerical simulations under various conditions.

Keywords

References

  1. Wise, Kevin A., "Robust stability analysis of adaptive missile autopilots", AIAA Paper, 2008-6999, 2008, pp. 1-18.
  2. Wise, Kevin A., "A trade study on missile autopilot design using optimal control theory", Proceedings of the 2007 AIAA Guidance, Navigation, and Control Conference, Hilton Head, USA, 2007.
  3. Sharma, M., Calise, A. J., and Corban, J. E., "Application of an adaptive autopilot design to a family of guided munitions", Proceedings of the 2000 AIAA Guidance, Navigation, and Control Conference. Denver, USA, 2000.
  4. Peter, F., Holzapfel, F., Xargay, E., and Hovakimyan, N., "L1 Adaptive Augmentation of a Missile Autopilot", Proceedings of the 2012 AIAA Guidance, Navigation, and Control Conference. Minnesota, USA, 2012.
  5. C. H, Lee., T. H., Kim., and M. J. Tahk., "Missile autopilot design for agile turn using time delay control with nonlinear observer", International Journal of Aeronautical and Space Science and Technology, Vol. 12, No.3, 2011, pp. 266-273. https://doi.org/10.5139/IJASS.2011.12.3.266
  6. Kim, S. H., and M. J. Tahk., "Missile acceleration controller design using proportional-integral and nonlinear dynamic control design method", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 226, No. 8, 2012, pp. 882-897. https://doi.org/10.1177/0954410011417510
  7. Choe, D. G., and Kim, J. H. "Pitch autopilot design using model-following adaptive sliding mode control". Journal of Guidance, Control, and Dynamics, Vol. 25, No. 4, 2002, pp. 826-829. https://doi.org/10.2514/2.4954
  8. Tang, W. Q., and Cai, Y. L., "Predictive Functional Control Based Missile Autopilot Design". Journal of Guidance, Control, and Dynamics, Vol. 35, No. 5, 2012, pp. 1450-1455. https://doi.org/10.2514/1.56329
  9. Kim, S. H., Kim, Y. S., and Song, C., "A robust adaptive nonlinear control approach to missile autopilot design". Control engineering practice, Vol. 12, No. 2, 2004, pp. 149-154. https://doi.org/10.1016/S0967-0661(03)00016-9
  10. Godbole, A. A., T. R. Libin, and S. E. Talole., "Extended state observer-based robust pitch autopilot design for tactical missiles." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 226, No. 12, 2012, pp. 1482-1501. https://doi.org/10.1177/0954410011426397
  11. Cao, C., and Hovakimyan, N., "L1 adaptive outputfeedback controller for non-strictly-positive-real reference systems: missile longitudinal autopilot design", Journal of Guidance, Control, and Dynamics, Vol. 32, No. 3, 2009, pp. 717-726. https://doi.org/10.2514/1.40877
  12. Hovakimyan, N., and Cao, C., L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. Vol. 21. Siam, Philadephia, 2010.
  13. Garnell P. Guided Weapon Control System, 2nd ed., Pergamon , New York, 1980
  14. Kharisov, E., Kim, K. K. K., Wang, X., and Hovakimyan, N., "Limiting behavior of L1 adaptive controllers." Proceedings of AIAA Guidance, Navigation and Control Conference, Portland, OR. 2011.
  15. Hyungbo Shim., and Nam H. Jo., "An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer." Automatica, Vol. 45, No. 1, 2009, pp. 296-299. https://doi.org/10.1016/j.automatica.2008.10.009
  16. Bhattacharyya, S. P., H. Chapellat, and L. H. Keel,. Robust control, Prentice-Hall, Upper Saddle River, New Jersey, 1995.
  17. PolyX, Ltd, The Polynomial Toolbox for MATLAB$^{\circed R}$ Manual. 1999
  18. Kennedy, J., and Eberhart, R,. Particle swarm optimization. Proceedings of IEEE international conference on neural networks, Vol. 4, No. 2, 1995, pp. 1942-1948.
  19. Nesline, F. William, and Mark L. Nesline., "How autopilot requirements constrain the aerodynamic design of homing missiles", Proceedings of the 1984 American Control Conference, IEEE, San Diego, USA, 1984.
  20. Zarchan P., Tactical and strategic missile guidance, 3rd ed., AIAA, Washington, DC, 1998.
  21. Annaswamy, A., Jang, J., and Lavretsky, E., "Stability Margins for Adaptive Controllers in the Presence of Time Delay," AIAA Guidance, Navigation, and Control Conference, Honolulu, USA, 2008.
  22. Nguyen, N., and Summers, E.,"On Time Delay Margin Estimation for Adaptive Control and Robust Modification Adaptive Laws." AIAA Guidance, Navigation, and Control Conference, Portland, USA, 2011.
  23. Dorobantu, A., Seiler, P., and Balas, G. J., "Timedelay margin analysis for an adaptive controller." Journal of Guidance, Control, and Dynamics, Vol. 35, No. 5, 2012, pp.1418- 1425 https://doi.org/10.2514/1.56719

Cited by

  1. Robust control synthesis using coefficient diagram method and Β΅-analysis: an aerospace example pp.2195-2698, 2018, https://doi.org/10.1007/s40435-018-0462-7