• Title/Summary/Keyword: Ministry of Food and Drug Safety

Search Result 611, Processing Time 0.03 seconds

Synthetic Cannabinoid-Induced Immunosuppression Augments Cerebellar Dysfunction in Tetanus-Toxin Treated Mice

  • Yun, Jaesuk;Gu, Sun Mi;Lee, Tac-hyung;Song, Yun Jeong;Seong, Seonhwa;Kim, Young-Hoon;Cha, Hye Jin;Han, Kyoung Moon;Shin, Jisoon;Oh, Hokyung;Jung, Kikyung;Ahn, Chiyoung;Park, Hye-Kyung;Kim, Hyung Soo
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.266-271
    • /
    • 2017
  • Synthetic cannabinoids are one of most abused new psychoactive substances. The recreational use of abused drug has aroused serious concerns about the consequences of these drugs on infection. However, the effects of synthetic cannabinoid on resistance to tetanus toxin are not fully understood yet. In the present study, we aimed to determine if the administration of synthetic cannabinoids increase the susceptibility to tetanus toxin-induced motor behavioral deficit and functional changes in cerebellar neurons in mice. Furthermore, we measured T lymphocytes marker levels, such as CD8 and CD4 which against tetanus toxin. JWH-210 administration decreased expression levels of T cell activators including cluster of differentiation (CD) $3{\varepsilon}$, $CD3{\gamma}$, CD74p31, and CD74p41. In addition, we demonstrated that JWH-210 induced motor impairment and decrement of vesicle-associated membrane proteins 2 levels in the cerebellum of mice treated with tetanus toxin. Furthermore, cerebellar glutamatergic neuronal homeostasis was hampered by JWH-210 administration, as evidenced by increased glutamate concentration levels in the cerebellum. These results suggest that JWH-210 may increase the vulnerability to tetanus toxin via the regulation of immune function.

Development and validation of an analytical method for the quantification of 2,6-diisopropylnaphthalene in agricultural products using GC-MS/MS

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Chung, Yun mi;Choi, Ha na;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Analytical Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • An analytical method was developed and optimized for the quantification of a plant growth regulator, 2,6-diisopropylnaphthalene (2,6-DIPN), in agricultural products using gas chromatography-tandem mass spectrometry. The samples were extracted, partitioned, and were purified using a Florisil® cartridge. To validate the analytical method, its specificity, linearity, limit of detection (LOD) and limit of quantification (LOQ) of the instrument, LOQ of the analytical method (MLOQ), accuracy, and repeatability were considered. The method displayed excellent results during validation, and is suitable for the determination and quantification of the low residual levels of the analyte in the agricultural samples. All of the results with the optimized method were satisfactory and within the criteria ranges requested in the Codex Alimentarius Commission guidelines and the Ministry of Food and Drug Safety guidelines for pesticide residue analysis. The developed method is simple and accurate and can be used as a basis for safety management of 2,6-DIPN.

Potential for Dependence on Lisdexamfetamine - In vivo and In vitro Aspects

  • Yun, Jaesuk;Lee, Kwang-Wook;Eom, Jang-Hyeon;Kim, Young-Hoon;Shin, Jisoon;Han, Kyoungmoon;Park, Hye-Kyung;Kim, Hyung Soo;Cha, Hye Jin
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.659-664
    • /
    • 2017
  • Although lisdexamfetamine is used as a recreational drug, little research exists regarding its potential for dependence or its precise mechanisms of action. This study aims to evaluate the psychoactivity and dependence profile of lisdexamfetamine using conditioned place preference and self-administration paradigms in rodents. Additionally, biochemical techniques are used to assess alterations in the dopamine levels in striatal synaptosomes following administration of lisdexamfetamine. Lisdexamfetamine increased both conditioned place preference and self-administration. Moreover, after administration of the lisdexamfetamine, dopamine levels in the striatal synaptosomes were significantly increased. Although some modifications should be made to the analytical methods, performing high performance liquid chromatography studies on synaptosomes can aid in predicting dependence liability when studying new psychoactive substances in the future. Collectively, lisdexamfetamine has potential for dependence possible via dopaminergic pathway.

Detection of CTX-M Type ESBL Producing Salmonella in Retail Meat in Korea

  • Kim, Yong Hoon;Joo, In Sun;Kim, Yoon Jeong;Oh, Mi Hyun;Cho, Joon Il;Han, Min Kyong;Kim, Soon Han;Moon, Tae Wha;Park, Kun Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.47-52
    • /
    • 2014
  • This study was performed to evaluate antimicrobial resistance of food-borne pathogens isolated from retail meat in Korea. A total of 157 samples of beef, pork, and chicken were collected and analyzed for E. coli, Salmonella, Campylobacter. Resistances to tetracycline were declined in accord with reduced usage of tetracycline in live stock production. E. coli stains from chicken meat had higher multi-drug resistance ratio than strains from other meat. One extended spectrum beta lactamase (ESBL) producing E. coli and two ESBL producing Salmonella were identified in this study. ESBL producing Salmonella strains were confirmed to carry CTX-M-1 type genes.

Dependence Potential of Tramadol: Behavioral Pharmacology in Rodents

  • Cha, Hye Jin;Song, Min Ji;Lee, Kwang-Wook;Kim, Eun Jung;Kim, Young-Hoon;Lee, Yunje;Seong, Won-Keun;Hong, Sa-Ik;Jang, Choon-Gon;Yoo, Han Sang;Jeong, Ho-Sang
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.558-562
    • /
    • 2014
  • Tramadol is an opioid analgesic agent that has been the subject of a series of case reports suggesting potential for misuse or abuse. However, it is not a controlled substance and is not generally considered addictive in Korea. In this study, we examined the dependence potential and abuse liability of tramadol as well as its effect on the dopaminergic and serotonergic systems in rodents. In animal behavioral tests, tramadol did not show any positive effects on the experimental animals in climbing, jumping, and head twitch tests. However, in the conditioned place preference and self-administration tests, the experimental animals showed significant positive responses. Taken together, tramadol affected the neurological systems related to abuse liability and has the potential to lead psychological dependence.

Development of DNA Molecular Markers for the Discrimination of Adenophorae Remotiflori Radix Based on the DNA Analysis (DNA 분석을 이용한 제니(薺苨) 유전자 마커 개발)

  • Kim, Minkyeoung;Lee, Wookyu;Kim, Jaelim;Lee, Kiho;Choi, Yoorae;Kim, Jonghwan;Kang, Ilhyun;Kang, Juhye
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.98-98
    • /
    • 2019
  • 제니(薺苨, Adenophorae Remotiflori Radix)는 "대한민국약전외한약(생약)규격집(KHP)"에 모시대(Adenophora remotiflorus Miquel)의 뿌리로 수재되어있으나, 형태학적으로 유사한 잔대(A. triphylla), 당잔대(A. stricta) 및 더덕(Codonopsis lanceolata)과 오 혼용 우려가 있어 이들을 구별하기 위한 정확하고 객관적인 종 감별법이 필요하다. 본 연구에서는 '제니'의 기원인 모시대와 오 혼용 우려가 있는 종들을 구별 할 수 있는 유전자 마커를 개발하기 위하여 Genbank에 등록된 ycf2 구간을 활요하여 모시대와 잔대, 당잔대를 구분 할 수 있는 INDEL (insertion/deletion) 마커를 개발하였다. 또한, 보다 정확한 종감별을 위해 DNA 바코드로 활용되고 있는 유전자 부위의 염기서열을 분석하여 ITS (25%), atpB-rbcL (15%), atpF-atpH (14%), rpl16 (13%), trnL-F (10%), matK (9%), rpoC1 (7%)에서 변이율(percent of variable sites)을 확인하였다. 향후, 본 연구에서 개발된 INDEL 마커와 더불어 추가적으로 개발을 진행 중인 분자 마커는 한약재 '제니'의 품질관리에 활용 가능할 것으로 사료된다.

  • PDF

Genetic Analysis of Medicinal Plants in Adenophorae Radix Using DNA Barcode (DNA바코드를 활용한 사삼(沙蔘)의 종 감별)

  • Kim, Minkyeoung;Lee, Wookyu;Kim, Jaelim;Lee, Kiho;Choi, Yoorae;Kim, Jonghwan;Kang, Ilhyun;Kang, Juhye
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.97-97
    • /
    • 2019
  • 사삼(沙蔘, Adenophorae Radix)은 "대한민국약전외한약(생약)규격집(KHP)"에 잔대 Adenophora triphylla var. japonica Hara 또는 사삼(당잔대, A. stricta Miq.)의 뿌리로 수재되어 있으나, 형태학적으로 유사한 제니(모시대, A. remotiflorus Miquel), 층층잔대(윤엽사삼, A. tetraphylla (Thunb.) Fisch), 더덕 Codonopsis lanceolata (Sieb. et Zucc.)과 오 혼용 우려가 있어 이들을 구별하기 위한 종 감별법이 필요하다. 본 연구에서는 '사삼'과 오 혼용 우려가 있는 종들을 구별할 수 있는 유전자 마커 개발을 위하여 DNA 바코드로 활용되고 있는 유전자 부위를 분석하여 ITS (25%), atpB-rbcL (15%), atpF-atpH (14%), rpl16 (13%), trnL-F (10%), matK (9%), rpoC1 (7%)에서 변이율(percent of variable sites)을 확인하였다. 또한, 분석한 유전자 부위 중 종간 차이를 확인하기 용이한 matK 구간을 활용해 기원종인 잔대, 당잔대와 형태적으로 유사하여 오 혼용될 우려가 있는 층층잔대, 모시대 및 더덕을 감별 할 수 있는 유전자 마커를 개발하였다. 본 연구를 통해 얻어진 염기서열과 분자 마커는 '사삼'의 품질관리에 유용하게 활용 가능할 것으로 사료된다.

  • PDF

Application and Validation of an Optimal Analytical Method using QuEChERS for the determination of Tolpyralate in Agricultural Products (QuEChERS법을 활용한 농산물 중 제초제 Tolpyralate의 최적 분석법 선발 및 검증)

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kim, Ji-Young;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.246-252
    • /
    • 2020
  • BACKGROUND: Pesticides are broadly used to control weeds and pests, and the residues remaining in crops are managed in accordance with the MRLs (maximum residue limits). Therefore, an analytical method is required to quantify the residues, and we conducted a series of analyses to select and validate the quick and simple analytical method for tolpyralate in five agricultural products using QuEChERS (quick, easy, cheap, effective, rugged and safe) method and LC-MS/MS (liquid chromatography-tandem mass spectrometry). METHODS AND RESULTS: The agricultural samples were extracted with acetonitrile followed by addition of anhydrous magnesium sulfate, sodium chloride, disodium hydrogencitrate sesquihydrate and trisodium citrate dihydrate. After shaking and centrifugation, purification was performed with d-SPE (dispersive-solid phase extraction) sorbents. To validate the optimized method, its selectivity, linearity, LOD (limit of detection), LOQ (limit of quantitation), accuracy, repeatability, and reproducibility from the inter-laboratory analyses were considered. LOQ of the analytical method was 0.01 mg/kg at five agricultural products and the linearity of matrix-matched calibration were good at seven concentration levels, from 0.0025 to 0.25 mg/L (R2≥0.9980). Mean recoveries at three spiking levels (n=5) were in the range of 85.2~112.4% with associated relative standard deviation values less than 6.2%, and the coefficient of variation between the two laboratories was also below 13%. All optimized results were validated according to the criteria ranges requested in the Codex Alimentarius Commission (CAC) and Ministry of Food and Drug Safety (MFDS) guidelines. CONCLUSION: In conclusion, we suggest that the selected and validated method could serve as a basic data for detecting tolpyralate residue in imported and domestic agricultural products.

Development and Application of DNA Analysis Method for Identificaion of Main Ingredients in Starch (전분의 주원료 판별을 위한 유전자 분석법 개발 및 적용)

  • Park, Yong-Chjun;Kim, Mi-Ra;Kim, Yong-Sang;Lee, Ho-Yeon;Kim, Kyu-Heon;Lee, Jae-Hwang;Kim, Jae-I;Lee, Sang-Jae;Lee, Hwa-Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.181-187
    • /
    • 2013
  • Identification of main ingredients in starches has been investigated using physicochemical analysis method mainly. However, physicochemical properties such as particle size have limitations in determining the differences among mixed starches. Therefore, we developed a molecular biological method to identify materials used in starch, as a sample, 11 kinds of starches including sweet potato starch, potato starch, corn starch, and tapioca starch. DNeasy plant mini kit, magnetic DNA purification system, and CTAB methods were used to extract DNA from samples. After gene extraction, whole genome amplification (WGA) was performed to amplify the extracted DNA. Species-specific primers were used as followings: ib-286-F/ib-286-R (105 bp), Pss 01n-5'/Pss 01n-3' (216 bp), SS11b 3-5'/SS11b 3-3' (114 bp), and SSRY26-F/SSRY26-R (121 bp) gene for sweet potato, potato, corn, and tapioca, respectively. In this study, we could confirm the main ingredients using WGA and PCR method.

Phototoxicity Evaluation of Pharmaceutical Substances with a Reactive Oxygen Species Assay Using Ultraviolet A

  • Lee, Yong Sun;Yi, Jung-Sun;Lim, Hye Rim;Kim, Tae Sung;Ahn, Il Young;Ko, Kyungyuk;Kim, JooHwan;Park, Hye-Kyung;Sohn, Soo Jung;Lee, Jong Kwon
    • Toxicological Research
    • /
    • v.33 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • With ultraviolet and visible light exposure, some pharmaceutical substances applied systemically or topically may cause phototoxic skin irritation. The major factor in phototoxicity is the generation of reactive oxygen species (ROS) such as singlet oxygen and superoxide anion that cause oxidative damage to DNA, lipids and proteins. Thus, measuring the generation of ROS can predict the phototoxic potential of a given substance indirectly. For this reason, a standard ROS assay (ROS assay) was developed and validated and provides an alternative method for phototoxicity evaluation. However, negative substances are over-predicted by the assay. Except for ultraviolet A (UVA), other UV ranges are not a major factor in causing phototoxicity and may lead to incorrect labeling of some non-phototoxic substances as being phototoxic in the ROS assay when using a solar simulator. A UVA stimulator is also widely used to evaluate phototoxicity in various test substances. Consequently, we identified the applicability of a UVA simulator to the ROS assay for photoreactivity. In this study, we tested 60 pharmaceutical substances including 50 phototoxins and 10 non-phototoxins to predict their phototoxic potential via the ROS assay with a UVA simulator. Following the ROS protocol, all test substances were dissolved in dimethyl sulfoxide or sodium phosphate buffer. The final concentration of the test solutions in the reaction mixture was 20 to $200{\mu}M$. The exposure was with $2.0{\sim}2.2mW/cm^2$ irradiance and optimization for a relevant dose of UVA was performed. The generation of ROS was compared before and after UVA exposure and was measured by a microplate spectrophotometer. Sensitivity and specificity values were 85.7% and 100.0% respectively, and the accuracy was 88.1%. From this analysis, the ROS assay with a UVA simulator is suitable for testing the photoreactivity and estimating the phototoxic potential of various test pharmaceutical substances.