• Title/Summary/Keyword: Mining Technology

Search Result 1,997, Processing Time 0.022 seconds

Influence of explosives distribution on coal fragmentation in top-coal caving mining

  • Liu, Fei;Silva, Jhon;Yang, Shengli;Lv, Huayong;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • Due to certain geological characteristics (high thickness, rocky properties), some underground coal mines require the use of explosives. This paper explores the effects of fragmentation of different decks detonated simultaneously in a single borehole with the use of numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include an erosion criterion to simulate the cracks generated by the explosion. As expected, the near-borehole area was damaged by compression stresses, while far zones and the free surface of the boundary were subjected to tensile damage. With the increase of the number of decks in the borehole, different changes in the fracture pattern were observed, and the superposition effects of the stress wave became evident, affecting the fragmentation results. The superposition effect is more evident in close distances to the borehole, and its effect attenuates when the distance to the borehole increase.

Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method

  • Wang, Chunlai;Li, Changfeng;Chen, Zeng;Liao, Zefeng;Zhao, Guangming;Shi, Feng;Yu, Weijian
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.113-120
    • /
    • 2020
  • Rock damage is the main cause of accidents in underground engineering. It is difficult to predict rock damage accurately by using only one parameter. In this study, a rock failure prediction model was established by using stress, energy, and damage. The prediction level was divided into three levels according to the ratio of the damage threshold stress to the peak stress. A classification predicting model was established, including the stress, energy, damage and AE impact rate using Bayesian method. Results show that the model is good practicability and effectiveness in predicting the degree of rock failure. On the basis of this, a multi-parameter classification predicting deterioration model of rock failure was established. The results provide a new idea for classifying and predicting rockburst.

Improving Process Mining with Trace Clustering (자취 군집화를 통한 프로세스 마이닝의 성능 개선)

  • Song, Min-Seok;Gunther, C.W.;van der Aalst, W.M.P.;Jung, Jae-Yoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.4
    • /
    • pp.460-469
    • /
    • 2008
  • Process mining aims at mining valuable information from process execution results (called "event logs"). Even though process mining techniques have proven to be a valuable tool, the mining results from real process logs are usually too complex to interpret. The main cause that leads to complex models is the diversity of process logs. To address this issue, this paper proposes a trace clustering approach that splits a process log into homogeneous subsets and applies existing process mining techniques to each subset. Based on log profiles from a process log, the approach uses existing clustering techniques to derive clusters. Our approach are implemented in ProM framework. To illustrate this, a real-life case study is also presented.

ZnO@Ni-Co-S Core-Shell Nanorods-Decorated Carbon Fibers as Advanced Electrodes for High-Performance Supercapacitors

  • Sui, Yanwei;Zhang, Man;Hu, Haihua;Zhang, Yuanming;Qi, Jiqiu;Wei, Fuxiang;Meng, Qingkun;He, Yezeng;Ren, Yaojian;Sun, Zhi
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850148.1-1850148.9
    • /
    • 2018
  • The interconnected three-dimensional Ni-Co-S nanosheets were successfully deposited on ZnO nanorods by a one-step potentiostatic electrodeposition. The Ni-Co-S nanosheets provide a large electrode/electrolyte interfacial area which has adequate electroactive sites for redox reactions. Electrochemical characterization of the ZnO@Ni-Co-S core-shell nanorods presents high specifc capacitance (1302.5 F/g and 1085 F/g at a current density of 1 A/g and 20 A/g), excellent rate capabilities (83.3% retention at 20 A/g) and great cycling stability (65% retention after 5000 cycles at a current density of 30 A/g). The outstanding electrochemical performance of the as-prepared electrode material also can be ascribed to these reasons that the special structure improved electrical conductivity and allowed the fast diffusion of electrolyte ions.

The mechanism of rockburst-outburst coupling disaster considering the coal-rock combination: An experiment study

  • Du, Feng;Wang, Kai;Guo, Yangyang;Wang, Gongda;Wang, Liang;Wang, Yanhai
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.255-264
    • /
    • 2020
  • With the ongoing development of deep mining of coal resources, some coal mine dynamic disasters have exhibited characteristics of both coal-gas outbursts and rockbursts. Therefore, research is required on the mechanism of rockburst-outburst coupling disaster. In this study, the failure characteristics of coal-rock combination structures were investigated using lab-scale physical simulation experiments. The energy criterion of the rockburst-outburst coupling disaster was obtained, and the mechanism of the disaster induced by the gas-solid coupling instability of the coal-rock combination structure was determined. The experimental results indicate that the damage of the coal-rock structure is significantly different from that of a coal body. The influence of the coal-rock structure should be considered in the study of rockburst-outburst coupling disaster. The deformation degree of the roof is controlled by the more significant main role of the gas pressure and the difference in the strength between the rock body and the coal body. The outburst holes and spall characteristics of the coal body after the failure of the coal-rock structure are strongly affected by the difference in strength between the roof and the coal body. The research results provide an in-depth understanding of the mechanism of rockburst-outburst coupling disasters in deep mining.

Investigation lateral deformation and failure characteristics of strip coal pillar in deep mining

  • Chen, Shaojie;Qu, Xiao;Yin, Dawei;Liu, Xingquan;Ma, Hongfa;Wang, Huaiyuan
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.421-428
    • /
    • 2018
  • In deep mining, the lateral deformation of strip coal pillar appears to be a new characteristic. In order to study the lateral deformation of coal-mass, a monitoring method and monitoring instrument were designed to investigate the lateral deformation of strip coal pillar in Tangkou Coalmine with the mining depth of over 1000 m. Because of without influence of repeated mining, the bedding sandstone roof is easy to break and the angle between maximum horizontal stress and the roadway is small, the maximum lateral deformation is only about 287 mm lower than the other pillars in the same coalmine. In deep mining, the energy accumulation and release cause a discontinuous damage in the heterogeneous coal-mass, and the lateral deformation of coal pillar shows discontinuity, step and mutation characters. These coal-masses not only show a higher plasticity but also the high brittleness at the same time, and its burst tendency is more obvious. According to the monitoring results and theoretical calculations, the yield zone of the coal pillar width is determined as 15.6 m. The monitoring results presented through this study are of great significance to the stability analysis and design of coal pillar.

Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation

  • Wang, Changxiang;Shen, Baotang;Chen, Juntao;Tong, Weixin;Jiang, Zhe;Liu, Yin;Li, Yangyang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.485-495
    • /
    • 2020
  • Based on the movement characteristics of overlying strata with gangue backfilling, the compression test of gangue is designed. The deformation characterristics of gangue is obtained based on the different Talbot index. The deformation has a logarithmic growth trend, including sharp deformation stage, linear deformation stage, rheological stage, and the resistance to deformation changes in different stages. The more advantageous Talbot gradation index is obtained to control the surface subsidence. On the basis of similarity simulation test with gangue backfilling, the characteristics of roof failure and the evolution of the supporting force are analyzed. In the early stage of gangue backfilling, beam structure damage directly occurs at the roof, and the layer is separated from the overlying rock. As the working face advances, the crack arch of the basic roof is generated, and the separation layer is closed. Due to the supporting effect of filling gangue, the stress concentration in gangue backfilling stope is relatively mild. Based on the equivalent mining height model of gangue backfilling stope, the relationship between full ratio and mining height is obtained. It is necessary to ensure that the gradation of filling gangue meets the Talbot distribution of n=0.5, and the full ratio meets the protection grade requirements of surface buildings.

Analysis of International Standardization Trends of Smart Mining Technology: Focusing on GMG Guidelines (스마트 마이닝 기술 국제 표준화 동향 분석: GMG 가이드라인을 중심으로)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.173-193
    • /
    • 2022
  • In this study, international standardization trend of smart mining technology was analyzed focusing on the guidelines developed by GMG (Global Mining Guidelines Group). GMG is a non-profit organization that unites the global mining community. It was established to promote mining safety, innovation and sustainability. Currently, GMG's working group consists of artificial intelligence, asset management, autonomous mining, cybersecurity, data access and usage/interoperability, the electric mine, mineral processing, underground mining, and sustainability. Guideline development projects related to smart mining technology are being conducted in artificial intelligence, autonomous mining, cybersecurity, data access and usage/interoperability, and underground mining. As of April 2022, eight types of smart mining-related guidelines have been published through pre-launch, launch, guideline definition, contents generation, technical editing/layout/final review, and voting process. It is judged that the GMG guidelines can be an important reference for the development of domestic smart mining technology standards.

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Surface Modification of Colloidal Silica Nanoparticles: Controlling the size and Grafting Process

  • He, Wentao;Wu, Danhua;Li, Juan;Zhang, Kai;Xiang, Yushu;Long, Lijuan;Qin, Shuhao;Yu, Jie;Zhang, Qin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2747-2752
    • /
    • 2013
  • Surface modification of colloidal silica nanoparticles without disrupting the electric double layer of nanoparticles is a major challenge. In the work, silane was employed to modify colloidal silica nanoparticles without inducing bridge flocculation obviously. The effect of pH value of the silica sol, the amount of silane in feed, and reaction temperature on the graft amount and the final size of modified particles was investigated. The increased weight loss by TG and the appearance of $T_2$ and $T_3$ except for $Q_2$ and $Q_3$ signals by CP/MAS $^{29}Si$ NMR of the modified samples verified the successful grafting of silane. The graft amount reached 0.57 mmol/g, which was slightly lower than theory value, and the particle size remained nearly the same as unmodified particles for acidic silica sol at the optimum condition. For alkaline silica sol after modification, aggregates composed of several nanoparticles connected together with silane moleculars as the bridge appeared.