Browse > Article
http://dx.doi.org/10.12989/gae.2022.29.6.627

Mechanical behavior of sandstones under water-rock interactions  

Zhou, Kunyou (Key Laboratory of Deep Coal Resource Mining, Ministry of Education, China University of Mining and Technology)
Dou, Linming (Key Laboratory of Deep Coal Resource Mining, Ministry of Education, China University of Mining and Technology)
Gong, Siyuan (School of Mines, China University of Mining and Technology)
Chai, Yanjiang (School of Mines, China University of Mining and Technology)
Li, Jiazhuo (School of Mines, China University of Mining and Technology)
Ma, Xiaotao (School of Mines, China University of Mining and Technology)
Song, Shikang (Shaanxi Zhengtong Coal Industry Co., Ltd.)
Publication Information
Geomechanics and Engineering / v.29, no.6, 2022 , pp. 627-643 More about this Journal
Abstract
Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.
Keywords
acoustic emission; mechanical behavior; pore structure; sandstones; water content; water-rock interaction;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Zhou, Z.L., Tan, L.H. and Cai, X. (2020a), "Water infusion on the stability of coal specimen under different static stress conditions", Appl. Sci., 10(6), 2043. https://doi.org/10.3390/app10062043.   DOI
2 Wang, S., Li, H.M., Wang, W. and Li, D.Y. (2018b), "Experimental study on mechanical behavior and energy dissipation of anthracite coal in natural and forced water-saturation states under triaxial loading", Arabian J. Geosci., 11(21), 1-17. https://doi.org/10.1007/s12517-018-4014-4.   DOI
3 Wang, W., Zhang, S.W., Wang, S., Li, D.Y., Wang, W., Hao, Y.X. and Wang, H. (2021), "Mechanical behavior of limestone in natural and forced saturation states under uniaxial loading: an experimental study", Geomech. Geophys. Geo-Energy Geo-Resources, 7, 65. https://doi.org/10.1007/s40948-021-00261-6.   DOI
4 Wang, Z. H., Bi, L.P., Kwon, S., Qiao, L.P. and Li, W. (2020b), "The effects of hydro-mechanical coupling in fractured rock mass on groundwater inflow into underground openings", Tunn. Undergr. Sp. Tech., 103, 103489. https://doi.org/10.1016/j.tust.2020.103489.   DOI
5 Yu, J.L., Tahmasebi, A., Han, Y.N., Yin, F.K. and Li, X.C. (2013), "A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization", Fuel Process. Tech., 106, 9-20. https://doi.org/10.1016/j.fuproc.2012.09.051.   DOI
6 Yuan, R.F., Li, Y.Q. and Jiao, Z.H. (2015), "Movement of overburden stratum and damage evolution of floor stratum during coal mining above aquifers", Procedia Eng., 102:1857-1866. https://doi.org/10.1016/j.proeng.2015.01.324.   DOI
7 Zhang, Y.T., Ding, X.L., Huang, S.L., Wu, Y.J. and He, J. (2020), "Strength degradation of a natural thin-bedded rock mass subjected to water immersion and its impact on tunnel stability", Geomech. Eng., 21(1), 63-71. https://doi.org/10.12989/gae.2020.21.1.063.   DOI
8 Kharghani, M., Goshtasbi, K., Nikkah, M. and Ahangari, K. (2021), "Investigation of the Kaiser effect in anisotropic rocks with different angles by acoustic emission method", Appl. Acoust., 175(4), 107831. https://doi.org/10.1016/j.apacoust.2020.107831.   DOI
9 Hadizadeh, J., Sehhati, R. and Tullis, T. (2010), "Porosity and particle shape changes leading to shear localization in small-displacement faults", J. Struct. Geol., 32(11), 1712-1720. https://doi.org/10.1016/j.jsg.2010.09.010.   DOI
10 Hodot, B.B. (1966), Coal and gas outburst, China Industrial Press, Beijing, China.
11 Kuznetcov, N., Fedotova, I. and Pak, A. (2018), "Study of physical-mechanical properties of hard rocks under water-saturated conditions", Proceedings of the International European Rock Mechanics Symposium (EUROCK), Saint Petersburg, RUSSIA, May.
12 Li, Y., Yang, J.H., Pan, Z.J. and Tong, W.S. (2020), "Nanoscale pore structure and mechanical property analysis of coal: An insight combining AFM and SEM images", Fuel, 260, 116352. https://doi.org/10.1016/j.fuel.2019.116352.   DOI
13 Wang, X.R., Wang, E.Y., Liu, X.F., Li, X.L., Wang, H. and Li, D.X. (2018a), "Macro-crack propagation process and corresponding AE behaviors of fractured sandstone under different loading rates", Chinese J. Rock Mech. Eng., 37(6), 1446-1458. https://doi.org/10.13722/j.cnki.jrme.2017.1672.   DOI
14 Kim, E., Garcia, A. and Changani, H. (2018), "Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents", Geomech. Eng., 4(2), 151-159. https://doi.org/10.12989/gae.2018.14.2.151.   DOI
15 Li, Z.L., He, X.Q., Dou, L.M., Song, D.Z., Wang, G.F. and Xu, X.L. (2019), "Investigating the mechanism and prevention of coal mine dynamic disasters by using dynamic cyclic loading tests", Saf. Sci., 115, 215-228. https://doi.org/10.1016/j.ssci.2019.02.011.   DOI
16 Ohno, K. and Ohtsu, M. (2010), "Crack classification in concrete based on acoustic emission", Constr. Build. Mater., 24(12), 2339-2346. https://doi.org/10.1016/j.conbuildmat.2010.05.004.   DOI
17 Raynaud, S, Fabre, D, Mazerolle, F., Geraud, Y. and Latiere, H.J. (1989), "Analysis of the internal structure of rocks and characterization of mechanical deformation by a non-destructive method: X-ray tomodensitometry", Tectonophysics, 159(1-2), 149-159. https://doi.org/10.1016/0040-1951(89)90176-5.   DOI
18 Wang, B., Jiang, F.X., Zhu, S.T., Zhang, X.F., Shang, X.G., Gu, S.Y. and Wu, Z. (2020a), "Investigating on the mechanism and prevention of rock burst induced by high intensity mining of drainage area in deep mines", J. China Coal Soc., 45(9), 3054-3064. https://doi.org/10.13225/j.cnki.jccs.2020.0382.   DOI
19 Xu, J.Z., Zhai, C., Qin, L. and Liu, S.M. (2018), "Pulse hydraulic fracturing technology and its application in coalbed methane extraction", Int. J. Oil Gas Coal Tech., 19(1), 115-133. https://doi.org/10.1504/IJOGCT.2018.093962.   DOI
20 Yang, J., Hatcherian, J., Hackley, P.C. and Pomerantz, A.E. (2017), "Nanoscale geochemical and geomechanical characterization of organic matter in shale", Nature Commun., 8(1), 2179. https://doi.org/10.1038/s41467-017-02254-0.   DOI
21 Zhang, T., Yu, L.Y., Su, H.J., Zhang, Q. and Chai, S.B. (2021), "Experimental and numerical investigations on the tensile mechanical behavior of marbles containing dynamic damage", Int. J. Min. Sci. Tech., 32(1), 89-102. https://doi.org/10.1016/j.ijmst.2021.08.002.   DOI
22 Yao, Q.L., Zheng, C.K., Tang, C.J., Xu, Q., Chong, Z.H. and Li, X.H. (2020), "Experimental investigation of the mechanical failure behavior of coal specimens with water intrusion", Front. Earth Sci., 7, 348. https://doi.org/10.3389/feart.2019.00348.   DOI
23 Zhou, K.Y., Dou, L.M., Li, X.W., Song, S.K., Cao, J.R., Bai, J.Z. and Ma, X.T. (2022), "Coal burst and mining-induced stress evolution in a deep isolated main entry area - A case study", Eng. Fail. Anal., 137, 106289. https://doi.org/10.1016/j.engfailanal.2022.106289.   DOI
24 Gardner, W. (1921), "Note on the dynamics of capillary flow", Phys. Rev., 18(3), 206-209. https://doi.org/10.1103/PhysRev.18.206.   DOI
25 Seunghwan, K., Rim Heuidae, D. and Seongmin Y. (2017), "A Study on the impermeable effect by grouting in the subsea tunnel", J. Korean Geo-Environ. Soc., 18(6), 5-19. https://doi.org/10.14481/jkges.2017.18.6.5.   DOI
26 Shapiro, A.M., Evans, C.E. and Hayes, E.C. (2017), "Porosity and pore size distribution in a sedimentary rock: Implications for the distribution of chlorinated solvents", J. Contaminant Hydrology, 203, 70-84. https://doi.org/10.1016/j.jconhyd.2017.06.006.   DOI
27 Sun, Y.J., Zuo, J.P., Karakus, M. and Wang, J.T. (2019), "Investigation of movement and damage of integral overburden during shallow coal seam mining", Int. J. Rock Mech. Min. Sci., 117, 63-75. https://doi.org/10.1016/j.ijrmms.2019.03.019.   DOI
28 Tang, C.J., Yao, Q.L., Xu, Q., Shan, C.H., Xu, J.M., Han, H. and Guo, H.T. (2021), "Mechanical failure modes and fractal characteristics of coal samples under repeated drying-Saturation conditions", Nat. Resour. Res., 2021, 1-18. https://doi.org/10.1007/s11053-021-09905-6.   DOI
29 Vishal, V., Ranjith, P.G. and Singh, T.N. (2015), "An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission", J. Nat. Gas Sci. Eng., 22, 428-436. https://doi.org/10.1016/j.jngse.2014.12.020.   DOI
30 Vasarhelyi, B. and Van, P. (2006), "Influence of water content on the strength of rock", Eng. Geol., 84(1-2), 70-74. https://doi.org/10.1016/j.enggeo.2005.11.011.   DOI
31 Gaucher, E.C., Defossez, P.D.C., Bizi, M., Bonijoly, D., Disnar, J.R., Defarge, F.L., Garnier, C., Finqueneisel, G., Zimny, T., Grgic, D., Pokryszka, Z., Lafortune, S. and Gilbert, S.V. (2011), "Coal laboratory characterisation for CO2 geological storage", Energy Procedia, 4(1), 3147-3154. https://doi.org/10.1016/j.egypro.2011.02.229.   DOI
32 Zhou, K.Y., Dou, L.M., Gong, S.Y., Li, J.Z., Zhang, J.K. and Cao, J.R. (2020b), "Study of rock burst risk evolution in front of deep longwall panel based on passive seismic velocity tomography", Geofluids, 2020(1), 1-14. https://doi.org/10.1155/2020/8888413.   DOI
33 Liu, H.L., Zhu, W.C., Yu, Y.J., Xu, T., Li, R.F. and Liu, X.G. (2020), "Effect of water imbibition on uniaxial compression strength of sandstone", Int. J. Rock Mech. Min. Sci., 127:104200. https://doi.org/10.1016/j.ijrmms.2019.104200.   DOI
34 Masoumi, H., Horne, J. and Timms, W. (2017), "Establishing empirical relationships for the effects of water content on the mechanical behavior of gosford sandstone", Rock Mech. Rock Eng., 50, 2235-2242. https://doi.org/10.1007/s00603-017-1243-x.   DOI
35 Pimienta, L., Fortin, J. and Gueguen, Y. (2014), "Investigation of elastic weakening in limestone and sandstone samples from moisture adsorption", Geophys. J. Int., 199(1), 335-347. https://doi.org/10.1093/gji/ggu257.   DOI
36 Ranjith, P.G., Zhao, J., Ju, M.H., De Silva, R.V.S., Rathnaweera, T.D. and Bandara, A.K.M.S. (2017), "Opportunities and challenges in deep mining: A brief review", Eng., 3(4), 546-551. https://doi.org/10.1016/J.ENG.2017.04.024.   DOI
37 Aggelis, D.G. (2011), "Classification of cracking mode in concrete by acoustic emission parameters", Mech. Res. Commun., 38(3), 153-157. https://doi.org/10.1016/j.mechrescom.2011.03.007.   DOI
38 Davydov, V.V., Myazin, N.S., Dudkin, V.I. and Velichko, E.N. (2018), "Investigation of condensed media in weak fields by the method of nuclear magnetic resonance", Russian Phys. J., 61(1), 162-168. https://doi.org/10.1007/s11182-018-1380-z.   DOI
39 Yang, X.H., Ren, T., Tan, L.H. and Remennikov, A. (2021), "Effects of water saturation time on energy dissipation and burst propensity of coal specimens", Geomech. Eng., 24(3), 205-213. https://doi.org/10.12989/gae.2021.24.3.205.   DOI
40 Vaneghi, R.G., Thoeni, K., Dyskin, A.V., Sharifzadeh, M. and Sarmadivaleh, M. (2020), "Strength and damage response of sandstone and granodiorite under different loading conditions of multistage uniaxial cyclic compression", Int. J. Geomech., 20(9), 04020159. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001801.   DOI
41 Hashiba, K. and Fukui, K. (2015), "Effect of water on the deformation and failure of rock in uniaxial tension", Rock Mech. Rock Eng., 48(5), 1751-1761. https://doi.org/10.1007/s00603-014-0674-x.   DOI
42 Song, H.H., Zhao, Y.X., Jiang, Y.D. and Du, W.S. (2020), "Experimental investigation on the tensile strength of coal: consideration of the specimen size and water content", Energies, 13(24), 6585. https://doi.org/10.3390/en13246585.   DOI
43 He, M.M., Zhang, Z.Q., Zhu, J.W. and Li, N. (2021), "Correlation between the constant mi of Hoek-Brown criterion and porosity of intact rock", Rock Mech. Rock Eng., 55(2), 923-936. https://doi.org/10.1007/s00603-021-02718-2.   DOI
44 Janssen, C., Wirth, R., Reinicke, A., Rybacki, E., Naumann, R., Wenk, H.R. and Dresen, G. (2011), "Nanoscale porosity in SAFOD core samples (San Andreas Fault)", Earth Planetary Sci. Lett., 301(1-2), 179-189. https://doi.org/10.1016/j.epsl.2010.10.040.   DOI